Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Clin Med ; 13(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38337486

RESUMO

Background: Histamine intolerance manifests when there is an imbalance between the production of histamine and the body's capacity to metabolise it. Within the gastrointestinal tract, diamine oxidase (DAO) plays a pivotal role in breaking down ingested histamine. Insufficient levels of DAO have been linked to various diseases affecting the respiratory, cardiovascular, nervous, muscular, and digestive systems; some of these symptoms are evidenced in fibromyalgia syndrome. This underscores the crucial role of DAO in maintaining the histamine balance and highlights its association with diverse physiological systems and health conditions. The management of fibromyalgia commonly involves the use of psychotropic medications; however, their potential interactions with DAO remain not fully elucidated. Methods: This study delved into the influence of various psychotropic medications on DAO activity through in vitro experiments. Additionally, we explored their impact on the human intestinal cell line Caco-2, examining alterations in DAO expression at both the mRNA and protein levels along with DAO activity. Results: Notably, the examined drugs-sertraline, pregabalin, paroxetine, alprazolam, and lorazepam-did not exhibit inhibitory effects on DAO activity or lead to reductions in DAO levels. In contrast, citalopram demonstrated a decrease in DAO activity in in vitro assays without influencing DAO levels and activity in human enterocytes. Conclusions: These findings imply that a collaborative approach involving psychotropic medications and DAO enzyme supplementation for individuals with fibromyalgia and a DAO deficiency could offer potential benefits for healthcare professionals in their routine clinical practice.

2.
Mol Metab ; 74: 101749, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37271337

RESUMO

OBJECTIVE: Maresin 1 (MaR1) is a docosahexaenoic acid-derived proresolving lipid mediator with insulin-sensitizing and anti-steatosis properties. Here, we aim to unravel MaR1 actions on brown adipose tissue (BAT) activation and white adipose tissue (WAT) browning. METHODS: MaR1 actions were tested in cultured murine brown adipocytes and in human mesenchymal stem cells (hMSC)-derived adipocytes. In vivo effects of MaR1 were tested in diet-induced obese (DIO) mice and lean WT and Il6 knockout (Il6-/-) mice. RESULTS: In cultured differentiated murine brown adipocytes, MaR1 reduces the expression of inflammatory genes, while stimulates glucose uptake, fatty acid utilization and oxygen consumption rate, along with the upregulation of mitochondrial mass and genes involved in mitochondrial biogenesis and function and the thermogenic program. In Leucine Rich Repeat Containing G Protein-Coupled Receptor 6 (LGR6)-depleted brown adipocytes using siRNA, the stimulatory effect of MaR1 on thermogenic genes was abrogated. In DIO mice, MaR1 promotes BAT remodeling, characterized by higher expression of genes encoding for master regulators of mitochondrial biogenesis and function and iBAT thermogenic activation, together with increased M2 macrophage markers. In addition, MaR1-treated DIO mice exhibit a better response to cold-induced BAT activation. Moreover, MaR1 induces a beige adipocyte signature in inguinal WAT of DIO mice and in hMSC-derived adipocytes. MaR1 potentiates Il6 expression in brown adipocytes and BAT of cold exposed lean WT mice. Interestingly, the thermogenic properties of MaR1 were abrogated in Il6-/- mice. CONCLUSIONS: These data reveal MaR1 as a novel agent that promotes BAT activation and WAT browning by regulating thermogenic program in adipocytes and M2 polarization of macrophages. Moreover, our data suggest that LGR6 receptor is mediating MaR1 actions on brown adipocytes, and that IL-6 is required for the thermogenic effects of MaR1.


Assuntos
Tecido Adiposo Marrom , Ácidos Docosa-Hexaenoicos , Camundongos , Humanos , Animais , Tecido Adiposo Marrom/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Interleucina-6/metabolismo , Tecido Adiposo Branco/metabolismo , Adipócitos Marrons/metabolismo
3.
Nutrients ; 14(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684049

RESUMO

Consumption of grape seed proanthocyanidin extract (GSPE) has beneficial effects on the functionality of white adipose tissue (WAT). However, although WAT metabolism shows a clear diurnal rhythm, whether GSPE consumption could affect WAT rhythmicity in a time-dependent manner has not been studied. Ninety-six male Fischer rats were fed standard (STD, two groups) or cafeteria (CAF, four groups) diet for 9 weeks (n = 16 each group). From week 6 on, CAF diet animals were supplemented with vehicle or 25 mg GSPE/kg of body weight either at the beginning of the light/rest phase (ZT0) or at the beginning of the dark/active phase (ZT12). The two STD groups were also supplemented with vehicle at ZT0 or ZT12. In week 9, animals were sacrificed at 6 h intervals (n = 4) to analyze the diurnal rhythms of subcutaneous WAT metabolites by nuclear magnetic resonance spectrometry. A total of 45 metabolites were detected, 19 of which presented diurnal rhythms in the STD groups. Although most metabolites became arrhythmic under CAF diet, GSPE consumption at ZT12, but not at ZT0, restored the rhythmicity of 12 metabolites including compounds involved in alanine, aspartate, and glutamate metabolism. These results demonstrate that timed GSPE supplementation may restore, at least partially, the functional dynamics of WAT when it is consumed at the beginning of the active phase. This study opens an innovative strategy for time-dependent polyphenol treatment in obesity and metabolic diseases.


Assuntos
Extrato de Sementes de Uva , Proantocianidinas , Infecções Sexualmente Transmissíveis , Tecido Adiposo Branco , Animais , Ritmo Circadiano , Extrato de Sementes de Uva/farmacologia , Masculino , Proantocianidinas/farmacologia , Ratos , Ratos Wistar
4.
Nutrients ; 13(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34684533

RESUMO

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) have emerged as the leading causes of chronic liver disease in the world. Obesity, insulin resistance, and dyslipidemia are multifactorial risk factors strongly associated with NAFLD/NASH. Here, a specific combination of metabolic cofactors (a multi-ingredient; MI) containing precursors of glutathione (GSH) and nicotinamide adenine dinucleotide (NAD+) (betaine, N-acetyl-cysteine, L-carnitine and nicotinamide riboside) was evaluated as effective treatment for the NAFLD/NASH pathophysiology. Six-week-old male mice were randomly divided into control diet animals and animals exposed to a high fat and high fructose/sucrose diet to induce NAFLD. After 16 weeks, diet-induced NAFLD mice were distributed into two groups, treated with the vehicle (HFHFr group) or with a combination of metabolic cofactors (MI group) for 4 additional weeks, and blood and liver were obtained from all animals for biochemical, histological, and molecular analysis. The MI treatment reduced liver steatosis, decreasing liver weight and hepatic lipid content, and liver injury, as evidenced by a pronounced decrease in serum levels of liver transaminases. Moreover, animals supplemented with the MI cocktail showed a reduction in the gene expression of some proinflammatory cytokines when compared with their HFHFr counterparts. In addition, MI supplementation was effective in decreasing hepatic fibrosis and improving insulin sensitivity, as observed by histological analysis, as well as a reduction in fibrotic gene expression (Col1α1) and improved Akt activation, respectively. Taken together, supplementation with this specific combination of metabolic cofactors ameliorates several features of NAFLD, highlighting this treatment as a potential efficient therapy against this disease in humans.


Assuntos
Suplementos Nutricionais , Resistência à Insulina , Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Biomarcadores/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Fígado/lesões , Fígado/patologia , Cirrose Hepática/sangue , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/sangue , Oxirredução , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Clin Sci (Lond) ; 132(20): 2169-2174, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30341227

RESUMO

In a recent issue of Clinical Science, Prieto-Vicente et al. [Clin. Sci. (2018) 132, 985-1001] have smartly demonstrated a potential new use of cardiotrophin-1 (CT-1) to treat and palliate an inflammatory bowel disease such as ulcerative colitis. In that work, authors report that in ulcerative colitic mice, administration of exogenous recombinant CT-1 (rCT-1) promotes lower colon damage and lower disease activity index, reducing systemic levels of tumor necrosis factor α (TNF-α) and also diminishing TNF-α expression in colon together with the reduction in other common inflammation markers. Besides, in vivo rCT-1 administration induces activation of several molecular pathways, including nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription (STAT)-3, and abolishes bacterial translocation from intestine to other organs, including mesenteric ganglia, lungs, and spleen. Additionally, these results were nicely corroborated in CT-1 depleted mice; in which colon damage and ulcerative colitis severity were greater compared with the wild-type counterparts. All together, these results suggested that CT-1 could be a promising new therapeutic approach for treating inflammatory bowel disease, particularly ulcerative colitis. However, further studies are required to determine its major mechanisms of action and the potential efficacy of CT-1 in human inflammatory bowel diseases.


Assuntos
Colite Ulcerativa , Colite , Animais , Colo , Sulfato de Dextrana , Humanos , Camundongos , NF-kappa B
6.
Int J Mol Sci ; 18(8)2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28809783

RESUMO

Adipose tissue releases bioactive mediators called adipokines. This review focuses on the effects of omentin, vaspin, cardiotrophin-1, Tumor necrosis factor-like Weak Inducer of Apoptosis (TWEAK) and nephroblastoma overexpressed (NOV/CCN3) on obesity and diabetes. Omentin is produced by the stromal-vascular fraction of visceral adipose tissue. Obesity reduces omentin serum concentrations and adipose tissue secretion in adults and adolescents. This adipokine regulates insulin sensitivity, but its clinical relevance has to be confirmed. Vaspin is produced by visceral and subcutaneous adipose tissues. Vaspin levels are higher in obese subjects, as well as in subjects showing insulin resistance or type 2 diabetes. Cardiotrophin-1 is an adipokine with a similar structure as cytokines from interleukin-6 family. There is some controversy regarding the regulation of cardiotrophin-1 levels in obese -subjects, but gene expression levels of cardiotrophin-1 are down-regulated in white adipose tissue from diet-induced obese mice. It also shows anti-obesity and hypoglycemic properties. TWEAK is a potential regulator of the low-grade chronic inflammation characteristic of obesity. TWEAK levels seem not to be directly related to adiposity, and metabolic factors play a critical role in its regulation. Finally, a strong correlation has been found between plasma NOV/CCN3 concentration and fat mass. This adipokine improves insulin actions.


Assuntos
Citocina TWEAK/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Lectinas/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Obesidade/metabolismo , Serpinas/metabolismo , Animais , Citocina TWEAK/genética , Citocinas/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Lectinas/genética , Proteína Sobre-Expressa em Nefroblastoma/genética , Obesidade/genética , Obesidade/patologia , Serpinas/genética
7.
FASEB J ; 31(5): 2135-2145, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28188173

RESUMO

The beneficial actions of n-3 fatty acids on obesity-induced insulin resistance and inflammation have been related to the synthesis of specialized proresolving lipid mediators (SPMs) like resolvins. The aim of this study was to evaluate the ability of one of these SPMs, maresin 1 (MaR1), to reverse adipose tissue inflammation and/or insulin resistance in two models of obesity: diet-induced obese (DIO) mice and genetic (ob/ob) obese mice. In DIO mice, MaR1 (2 µg/kg; 10 d) reduced F4/80-positive cells and expression of the proinflammatory M1 macrophage phenotype marker Cd11c in white adipose tissue (WAT). Moreover, MaR1 decreased Mcp-1, Tnf-α, and Il-1ß expression, upregulated adiponectin and Glut-4, and increased Akt phosphorylation in WAT. MaR1 administration (2 µg/kg; 20 d) to ob/ob mice did not modify macrophage recruitment but increased the M2 macrophage markers Cd163 and Il-10. MaR1 reduced Mcp-1, Tnf-α, Il-1ß, and Dpp-4 and increased adiponectin gene expression in WAT. MaR1 treatment also improved the insulin tolerance test of ob/ob mice and increased Akt and AMPK phosphorylation in WAT. These data suggest that treatment with MaR1 can counteract the dysfunctional inflamed WAT and could be useful to improve insulin sensitivity in murine models of obesity.-Martínez-Fernández, L., González-Muniesa, P., Laiglesia, L. M., Sáinz, N., Prieto-Hontoria, P. L., Escoté, X., Odriozola, L., Corrales, F. J., Arbones-Mainar, J. M., Martínez, J. A., Moreno-Aliaga, M. J. Maresin 1 improves insulin sensitivity and attenuates adipose tissue inflammation in ob/ob and diet-induced obese mice.


Assuntos
Tecido Adiposo/metabolismo , Dieta , Ácidos Docosa-Hexaenoicos/farmacologia , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Ração Animal , Animais , Interleucina-10/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL
8.
J Clin Invest ; 126(1): 335-48, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26657864

RESUMO

Insulin resistance is a fundamental pathogenic factor that characterizes various metabolic disorders, including obesity and type 2 diabetes. Adipose tissue contributes to the development of obesity-related insulin resistance through increased release of fatty acids, altered adipokine secretion, and/or macrophage infiltration and cytokine release. Here, we aimed to analyze the participation of the cyclin-dependent kinase 4 (CDK4) in adipose tissue biology. We determined that white adipose tissue (WAT) from CDK4-deficient mice exhibits impaired lipogenesis and increased lipolysis. Conversely, lipolysis was decreased and lipogenesis was increased in mice expressing a mutant hyperactive form of CDK4 (CDK4(R24C)). A global kinome analysis of CDK4-deficient mice following insulin stimulation revealed that insulin signaling is impaired in these animals. We determined that insulin activates the CCND3-CDK4 complex, which in turn phosphorylates insulin receptor substrate 2 (IRS2) at serine 388, thereby creating a positive feedback loop that maintains adipocyte insulin signaling. Furthermore, we found that CCND3 expression and IRS2 serine 388 phosphorylation are increased in human obese subjects. Together, our results demonstrate that CDK4 is a major regulator of insulin signaling in WAT.


Assuntos
Adipócitos/metabolismo , Quinase 4 Dependente de Ciclina/fisiologia , Insulina/farmacologia , Células 3T3-L1 , Tecido Adiposo Branco/metabolismo , Animais , Ciclina D3/fisiologia , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Fator de Transcrição E2F1/fisiologia , Feminino , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Transdução de Sinais
9.
Am J Physiol Endocrinol Metab ; 308(9): E756-69, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25714670

RESUMO

Lipid overload in obesity and type 2 diabetes is associated with adipocyte dysfunction, inflammation, macrophage infiltration, and decreased fatty acid oxidation (FAO). Here, we report that the expression of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme in mitochondrial FAO, is higher in human adipose tissue macrophages than in adipocytes and that it is differentially expressed in visceral vs. subcutaneous adipose tissue in both an obese and a type 2 diabetes cohort. These observations led us to further investigate the potential role of CPT1A in adipocytes and macrophages. We expressed CPT1AM, a permanently active mutant form of CPT1A, in 3T3-L1 CARΔ1 adipocytes and RAW 264.7 macrophages through adenoviral infection. Enhanced FAO in palmitate-incubated adipocytes and macrophages reduced triglyceride content and inflammation, improved insulin sensitivity in adipocytes, and reduced endoplasmic reticulum stress and ROS damage in macrophages. We conclude that increasing FAO in adipocytes and macrophages improves palmitate-induced derangements. This indicates that enhancing FAO in metabolically relevant cells such as adipocytes and macrophages may be a promising strategy for the treatment of chronic inflammatory pathologies such as obesity and type 2 diabetes.


Assuntos
Adipócitos/metabolismo , Ácidos Graxos/metabolismo , Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/farmacologia , Macrófagos/metabolismo , Células 3T3-L1 , Adulto , Idoso , Animais , Estudos de Coortes , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Obesidade/metabolismo , Oxirredução , Triglicerídeos/metabolismo
10.
Cancer Lett ; 356(2 Pt A): 171-5, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24709629

RESUMO

Tumour cells proliferate much faster than normal cells; nearly all anticancer treatments are toxic to both cell types, limiting their efficacy. The altered metabolism resulting from cellular transformation and cancer progression supports cellular proliferation and survival, but leaves cancer cells dependent on a continuous supply of energy and nutrients. Hence, many metabolic enzymes have become targets for new cancer therapies. In addition to its well-described roles in cell-cycle progression and cancer, the cyclin/CDK-pRB-E2F1 pathway contributes to lipid synthesis, glucose production, insulin secretion, and glycolytic metabolism, with strong effects on overall metabolism. Notably, these cell-cycle regulators trigger the adaptive "metabolic switch" that underlies proliferation.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Fator de Transcrição E2F1/metabolismo , Metabolismo Energético/fisiologia , Neoplasias/metabolismo , Neoplasias/patologia , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Ciclinas/metabolismo , Ácidos Graxos/metabolismo , Glicólise/fisiologia , Humanos , Lipídeos/biossíntese , Proteína do Retinoblastoma/metabolismo
11.
Diabetologia ; 56(11): 2524-37, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23963324

RESUMO

AIMS/HYPOTHESIS: Circulating lipopolysaccharide-binding protein (LBP) is an acute-phase reactant known to be increased in obesity. We hypothesised that LBP is produced by adipose tissue (AT) in association with obesity. METHODS: LBP mRNA and LBP protein levels were analysed in AT from three cross-sectional (n = 210, n = 144 and n = 28) and three longitudinal (n = 8, n = 25, n = 20) human cohorts; in AT from genetically manipulated mice; in isolated adipocytes; and in human and murine cell lines. The effects of a high-fat diet and exposure to lipopolysaccharide (LPS) and peroxisome proliferator-activated receptor (PPAR)γ agonist were explored. Functional in vitro and ex vivo experiments were also performed. RESULTS: LBP synthesis and release was demonstrated to increase with adipocyte differentiation in human and mouse AT, isolated adipocytes and human and mouse cell lines (Simpson-Golabi-Behmel syndrome [SGBS], human multipotent adipose-derived stem [hMAD] and 3T3-L1 cells). AT LBP expression was robustly associated with inflammatory markers and increased with metabolic deterioration and insulin resistance in two independent cross-sectional human cohorts. AT LBP also increased longitudinally with weight gain and excessive fat accretion in both humans and mice, and decreased with weight loss (in two other independent cohorts), in humans with acquired lipodystrophy, and after ex vivo exposure to PPARγ agonist. Inflammatory agents such as LPS and TNF-α led to increased AT LBP expression in vivo in mice and in vitro, while this effect was prevented in Cd14-knockout mice. Functionally, LBP knockdown using short hairpin (sh)RNA or anti-LBP antibody led to increases in markers of adipogenesis and decreased adipocyte inflammation in human adipocytes. CONCLUSIONS/INTERPRETATION: Collectively, these findings suggest that LBP might have an essential role in inflammation- and obesity-associated AT dysfunction.


Assuntos
Proteínas de Fase Aguda/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/patologia , Proteínas de Transporte/metabolismo , Inflamação/metabolismo , Glicoproteínas de Membrana/metabolismo , Obesidade/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Adulto , Animais , Humanos , Técnicas In Vitro , Resistência à Insulina/fisiologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Rosiglitazona , Tiazolidinedionas/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
12.
PLoS One ; 8(5): e63937, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23700440

RESUMO

OBJECTIVE: Munc18c is associated with glucose metabolism and could play a relevant role in obesity. However, little is known about the regulation of Munc18c expression. We analyzed Munc18c gene expression in human visceral (VAT) and subcutaneous (SAT) adipose tissue and its relationship with obesity and insulin. MATERIALS AND METHODS: We evaluated 70 subjects distributed in 12 non-obese lean subjects, 23 overweight subjects, 12 obese subjects and 23 nondiabetic morbidly obese patients (11 with low insulin resistance and 12 with high insulin resistance). RESULTS: The lean, overweight and obese persons had a greater Munc18c gene expression in adipose tissue than the morbidly obese patients (p<0.001). VAT Munc18c gene expression was predicted by the body mass index (B = -0.001, p = 0.009). In SAT, no associations were found by different multiple regression analysis models. SAT Munc18c gene expression was the main determinant of the improvement in the HOMA-IR index 15 days after bariatric surgery (B = -2148.4, p = 0.038). SAT explant cultures showed that insulin produced a significant down-regulation of Munc18c gene expression (p = 0.048). This decrease was also obtained when explants were incubated with liver X receptor alpha (LXRα) agonist, either without (p = 0.038) or with insulin (p = 0.050). However, Munc18c gene expression was not affected when explants were incubated with insulin plus a sterol regulatory element-binding protein-1c (SREBP-1c) inhibitor (p = 0.504). CONCLUSIONS: Munc18c gene expression in human adipose tissue is down-regulated in morbid obesity. Insulin may have an effect on the Munc18c expression, probably through LXRα and SREBP-1c.


Assuntos
Insulina/metabolismo , Gordura Intra-Abdominal/metabolismo , Proteínas Munc18/metabolismo , Obesidade Mórbida/metabolismo , Gordura Subcutânea Abdominal/metabolismo , Adulto , Idoso , Índice de Massa Corporal , Regulação para Baixo , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Resistência à Insulina , Receptores X do Fígado , Masculino , Pessoa de Meia-Idade , Proteínas Munc18/genética , Receptores Nucleares Órfãos/metabolismo , PPAR gama/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Técnicas de Cultura de Tecidos
13.
Yeast ; 29(7): 251-63, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22674736

RESUMO

Resveratrol is a polyphenol suggested to play a protective role against ageing and age-related diseases. We demonstrate that administering low-doses of resveratrol causes ROS accumulation and transcriptional changes in yeast cells and human adipocytes. These changes in gene expression depend on the oxidative transcription factor Yap1p. In particular, resveratrol induces expression of Yap1p gene targets, such as TRX2, TRR1 or AHP1, in a Yap1p-dependent mode. Under resveratrol treatment, Yap1p is phosphorylated and accumulated in the nucleus. Yap1p knockout causes resveratrol sensitivity, which totally depends on the presence of the C-terminal region of Yap1p. Thus, resveratrol may enhance cellular lifespan by hormetic ROS accumulation, which leads to strengthening the cells' antioxidant capacity.


Assuntos
Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estilbenos/farmacologia , Fatores de Transcrição/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Linhagem Celular , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Resveratrol , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
14.
Endocrinology ; 152(11): 4072-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21862620

RESUMO

The increase in glucagon-like peptide-1 (GLP-1) activity has emerged as a useful therapeutic tool for the treatment of type 2 diabetes mellitus. The actions of GLP-1 on ß-cells and the nervous and digestive systems are well known. The action of this peptide in adipose tissue (AT), however, is still poorly defined. Furthermore, no relationship has been established between GLP-1 receptor (GLP-1R) in AT and obesity and insulin resistance (IR). We provide evidence for the presence of this receptor in AT and show that its mRNA and protein expressions are increased in visceral adipose depots from morbidly obese patients with a high degree of IR. Experiments with the 3T3-L1 cell line showed the lipolytic and lipogenic dose-dependent effect of GLP-1. Moreover, GLP-1 stimulated lipolysis in 3T3-L1 adipocytes in a receptor-dependent manner involving downstream adenylate cyclase/cAMP signaling. Our data also demonstrate that the expression of the GLP-1R in AT correlated positively with the homeostasis model assessment index in obese IR subjects. Furthermore, prospective studies carried out with patients that underwent biliopancreatic diversion surgery showed that subjects with high levels of GLP-1R expression in AT, which indicates a deficit of GLP-1 in this tissue, were those whose insulin sensitivity improved after surgery, suggesting the potential relationship between AT GLP-1R and insulin sensitivity amelioration in obese subjects. Altogether these results indicate that the GLP-1/GLP-1R system in AT represents another potential candidate for improving insulin sensitivity in obese patients.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Resistência à Insulina/fisiologia , Obesidade Mórbida/metabolismo , Receptores de Glucagon/metabolismo , Células 3T3-L1 , Animais , Células Cultivadas , Receptor do Peptídeo Semelhante ao Glucagon 1 , Humanos , Camundongos , Obesidade Mórbida/genética , Obesidade Mórbida/cirurgia , Estudos Prospectivos , Receptores de Glucagon/genética
15.
J Acquir Immune Defic Syndr ; 57(1): 16-23, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21317795

RESUMO

BACKGROUND: Little information is available with respect to the involvement of resistin in lipodystrophy and metabolic disturbances in HIV-1-infected patients treated with combination antiretroviral therapy (cART). We determined whether the resistin (rest) -420C>G single-nucleotide polymorphism and plasma resistin are associated with the development of lipodystrophy and metabolic disturbances in HIV-1-infected patients treated with cART. METHODS: The study group comprised 299 HIV-1-infected patients treated with a stable cART for at least 1 year (143 with lipodystrophy and 156 without) and 175 uninfected controls. Anthropometric, clinical, and metabolic variables were determined. Homeostasis model assessment for insulin resistance was used to evaluate insulin resistance. Plasma resistin levels were determined by enzyme-linked immunosorbent assay. The rest -420C>G was assessed using restriction fragment length polymorphism. Student t test, 1-way and 2-way analysis of variance, χ2 test, and Pearson and Spearman correlations were performed for statistical analysis. RESULTS: Genotypes containing the rest -420G variant allele were significantly more common in HIV-1-infected patients without lipodystrophy compared with those with lipodystrophy (P = 0.037). Infected patients had significantly greater plasma resistin levels than uninfected controls (P < 0.001). Among infected patients, plasma resistin levels were significantly lower in patients with lipodystrophy with respect to those without (P = 0.034). In infected patients, plasma resistin levels had a significant positive correlation with insulin and homeostasis model assessment for insulin resistance: P < 0.001 and P = 0.002 in the lipodystrophy subset and P = 0.002 and P = 0.03 in the nonlipodystrophy subset, respectively. CONCLUSIONS: In our cohort of white Spaniards, the rest -420C>G single-nucleotide polymorphism may be associated with cART-related lipodystrophy. Plasma resistin correlates with insulin resistance in infected patients with and without lipodystrophy.


Assuntos
Infecções por HIV/metabolismo , HIV-1 , Resistência à Insulina/fisiologia , Lipodistrofia/virologia , Resistina/sangue , Adulto , Antropometria , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/efeitos adversos , Contagem de Linfócito CD4 , Estudos de Casos e Controles , Estudos Transversais , Quimioterapia Combinada , Feminino , Genótipo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , Resistência à Insulina/genética , Resistência à Insulina/imunologia , Lipodistrofia/genética , Lipodistrofia/metabolismo , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Resistina/genética , Estatísticas não Paramétricas
16.
Endocrinology ; 151(11): 5247-54, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20844002

RESUMO

Cell cycle regulators such as cyclins, cyclin-dependent kinases, or retinoblastoma protein play important roles in the differentiation of adipocytes. In the present paper, we investigated the role of cyclin G2 as a positive regulator of adipogenesis. Cyclin G2 is an unconventional cyclin which expression is up-regulated during growth inhibition or apoptosis. Using the 3T3-F442A cell line, we observed an up-regulation of cyclin G2 expression at protein and mRNA levels throughout the process of cell differentiation, with a further induction of adipogenesis when the protein is transiently overexpressed. We show here that the positive regulatory effects of cyclin G2 in adipocyte differentiation are mediated by direct binding of cyclin G2 to peroxisome proliferator-activated receptor γ (PPARγ), the key regulator of adipocyte differentiation. The role of cyclin G2 as a novel PPARγ coactivator was further demonstrated by chromatin immunoprecipitation assays, which showed that the protein is present in the PPARγ-responsive element of the promoter of aP2, which is a PPARγ target gene. Luciferase reporter gene assays, showed that cyclin G2 positively regulates the transcriptional activity of PPARγ. The role of cyclin G2 in adipogenesis is further underscored by its increased expression in mice fed a high-fat diet. Taken together, our results demonstrate a novel role for cyclin G2 in the regulation of adipogenesis.


Assuntos
Adipócitos/metabolismo , Adipogenia/genética , Ciclina G2/metabolismo , PPAR gama/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Animais , Células Cultivadas , Ciclina G2/genética , Imunofluorescência , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Regulação para Cima
17.
Am J Physiol Endocrinol Metab ; 299(2): E308-17, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20530740

RESUMO

LPIN1 is a gene with important effects on lipidic and metabolic homeostasis. Human subcutaneous LPIN1 expression levels in adipose tissue are related with a better metabolic profile, including insulin sensitivity markers. However, there are few data on the regulation of LPIN1 in visceral adipose tissue (VAT). Our aim was to perform a cross-sectional analysis of VAT compared with subcutaneous (SAT) LPIN1 expression in a well-characterized obese cohort, its relation with the expression of genes involved in lipid metabolism, and the in vitro response to lipogenic and lipolytic stimuli. A downregulation of total LPIN1 mRNA expression in subjects with obesity was found in VAT similarly to that in SAT. Despite similar total LPIN1 mRNA levels in SAT and VAT, a close relationship with clinical parameters and with many lipogenic and lipolytic genes was observed primarily in SAT depot. As shown in the in vitro analysis, the low-grade proinflammatory environment and the insulin resistance associated with obesity may contribute to downregulate LPIN1 in adipose tissue, leading to a worse metabolic profile.


Assuntos
Tecido Adiposo/metabolismo , Metabolismo dos Lipídeos/genética , Lipólise/genética , Proteínas Nucleares/biossíntese , Gordura Subcutânea/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Adulto , Idoso , Western Blotting , Índice de Massa Corporal , Diferenciação Celular , Células Cultivadas , Estudos de Coortes , Estudos Transversais , DNA Complementar/biossíntese , DNA Complementar/genética , Feminino , Expressão Gênica/genética , Humanos , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Isoproterenol/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Masculino , Síndrome Metabólica/metabolismo , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Fosfatidato Fosfatase , Gordura Subcutânea/citologia , Gordura Subcutânea/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
18.
Obesity (Silver Spring) ; 17(6): 1124-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19197257

RESUMO

The aim of the study was to evaluate human plasma circulating levels of adipocyte fatty acid-binding protein (A-FABP) and its relationship with proinflammatory adipocytokines and insulin resistance in a severely obese cohort, before and 1 year after a surgical gastric bypass. Plasmatic levels of A-FABP were measured in 77 morbid-obese women before and 1 year after bariatric surgery. Anthropometrical parameters and body composition by bioelectrical impedance analysis were determined. Circulating levels of soluble tumor necrosis factor receptor 2 (sTNFR2), Interleukin 18 (IL-18), adiponectin, and high-sensitive C-reactive protein (hsCRP) were also analyzed. Insulin resistance by homeostasis model assessment of insulin resistance (HOMA-IR) index was calculated. After massive weight loss, A-FABP plasmatic levels decreased significantly [7.6 (8.9) vs. 4.3 (5.1); P<0,001] but no association with circulating adipokines or proinflammatory cytokines, both at the beginning and at the end of follow-up, was observed. A decrease in sTNFR2, IL-18, hsCRP, and an increase in adiponectin levels (P<0.001 in all cases) were observed after the gastric bypass. HOMA-IR index improved 1 year after surgery and after multiple regression analysis remained associated with A-FABP after controlling for confounding variables (beta=0.322, P=0.014; R2 for the model 0.281). In morbid-obese women, plasma A-FABP concentrations were dramatically reduced after gastric bypass surgery. After weight loss this protein contributed to HOMA-IR index independently of proinflammatory/antinflammatory cytokine profile. Further studies are warranted to elucidate the role of A-FABP in the pathogenesis of insulin resistance in morbid obesity.


Assuntos
Proteínas de Ligação a Ácido Graxo/sangue , Resistência à Insulina , Obesidade Mórbida/sangue , Adiponectina/sangue , Adulto , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , Feminino , Derivação Gástrica , Humanos , Interleucina-18/sangue , Pessoa de Meia-Idade , Obesidade Mórbida/fisiopatologia , Obesidade Mórbida/cirurgia , Receptores Tipo II do Fator de Necrose Tumoral/sangue , Fatores de Tempo , Resultado do Tratamento , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA