Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
JCI Insight ; 6(18)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34324441

RESUMO

BACKGROUNDA previous phase I study showed that the infusion of autologous Tregs expanded ex vivo into patients with recent-onset type 1 diabetes (T1D) had an excellent safety profile. However, the majority of the infused Tregs were undetectable in the peripheral blood 3 months postinfusion (Treg-T1D trial). Therefore, we conducted a phase I study (TILT trial) combining polyclonal Tregs and low-dose IL-2, shown to enhance Treg survival and expansion, and assessed the impact over time on Treg populations and other immune cells.METHODSPatients with T1D were treated with a single infusion of autologous polyclonal Tregs followed by one or two 5-day courses of recombinant human low-dose IL-2 (ld-IL-2). Flow cytometry, cytometry by time of flight, and 10x Genomics single-cell RNA-Seq were used to follow the distinct immune cell populations' phenotypes over time.RESULTSMultiparametric analysis revealed that the combination therapy led to an increase in the number of infused and endogenous Tregs but also resulted in a substantial increase from baseline in a subset of activated NK, mucosal associated invariant T, and clonal CD8+ T cell populations.CONCLUSIONThese data support the hypothesis that ld-IL-2 expands exogenously administered Tregs but also can expand cytotoxic cells. These results have important implications for the use of a combination of ld-IL-2 and Tregs for the treatment of autoimmune diseases with preexisting active immunity.TRIAL REGISTRATIONClinicalTrials.gov NCT01210664 (Treg-T1D trial), NCT02772679 (TILT trial).FUNDINGSean N. Parker Autoimmune Research Laboratory Fund, National Center for Research Resources.


Assuntos
Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/terapia , Imunoterapia Adotiva , Interleucina-2/administração & dosagem , Linfócitos T Reguladores/transplante , Adulto , Peptídeo C/sangue , Linfócitos T CD8-Positivos , Sobrevivência Celular , Terapia Combinada , Diabetes Mellitus Tipo 1/imunologia , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Interleucina-2/efeitos adversos , Contagem de Linfócitos , Masculino , Células T Matadoras Naturais , Proteínas Recombinantes/administração & dosagem , Fatores de Tempo , Transcriptoma , Adulto Jovem
2.
J Trauma Acute Care Surg ; 91(1): 24-33, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34144557

RESUMO

BACKGROUND: Despite the widespread institution of modern massive transfusion protocols with balanced blood product ratios, survival for patients with traumatic hemorrhage receiving ultramassive transfusion (UMT) (defined as ≥20 U of packed red blood cells [RBCs]) in 24 hours) remains low and resource consumption remains high. Therefore, we aimed to identify factors associated with mortality in trauma patients receiving UMT in the modern resuscitation era. METHODS: An Eastern Association for the Surgery of Trauma multicenter retrospective study of 461 trauma patients from 17 trauma centers who received ≥20 U of RBCs in 24 hours was performed (2014-2019). Multivariable logistic regression and Classification and Regression Tree analysis were used to identify clinical characteristics associated with mortality. RESULTS: The 461 patients were young (median age, 35 years), male (82%), severely injured (median Injury Severity Score, 33), in shock (median shock index, 1.2; base excess, -9), and transfused a median of 29 U of RBCs, 22 U of fresh frozen plasma (FFP), and 24 U of platelets (PLT). Mortality was 46% at 24 hours and 65% at discharge. Transfusion of RBC/FFP ≥1.5:1 or RBC/PLT ≥1.5:1 was significantly associated with mortality, most pronounced for the 18% of patients who received both RBC/PLT and RBC/FFP ≥1.5:1 (odds ratios, 3.11 and 2.81 for mortality at 24 hours and discharge; both p < 0.01). Classification and Regression Tree identified that age older than 50 years, low initial Glasgow Coma Scale, thrombocytopenia, and resuscitative thoracotomy were associated with low likelihood of survival (14-26%), while absence of these factors was associated with the highest survival (71%). CONCLUSION: Despite modern massive transfusion protocols, one half of trauma patients receiving UMT are transfused with either RBC/FFP or RBC/PLT in unbalanced ratios ≥1.5:1, with increased associated mortality. Maintaining focus on balanced ratios during UMT is critical, and consideration of advanced age, poor initial mental status, thrombocytopenia, and resuscitative thoracotomy can aid in prognostication. LEVEL OF EVIDENCE: Prognostic, level III.


Assuntos
Transfusão de Componentes Sanguíneos/métodos , Hemorragia/terapia , Ressuscitação/métodos , Trombocitopenia/epidemiologia , Ferimentos e Lesões/terapia , Adulto , Fatores Etários , Transfusão de Componentes Sanguíneos/estatística & dados numéricos , Feminino , Escala de Coma de Glasgow , Hemorragia/diagnóstico , Hemorragia/etiologia , Hemorragia/mortalidade , Mortalidade Hospitalar , Humanos , Escala de Gravidade do Ferimento , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Fatores de Risco , Trombocitopenia/etiologia , Trombocitopenia/terapia , Centros de Traumatologia/estatística & dados numéricos , Resultado do Tratamento , Ferimentos e Lesões/complicações , Ferimentos e Lesões/diagnóstico , Ferimentos e Lesões/mortalidade
3.
J Allergy Clin Immunol ; 142(6): 1710-1718, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30367909

RESUMO

Forkhead box P3-expressing regulatory T (Treg) cells are essential for self-tolerance, with an emerging role in tissue repair and regeneration. Their ability to traffic to tissue and perform complex therapeutic tasks in response to the tissue microenvironment make them an attractive candidate for drug development. Early experiences of Treg cell therapy in patients with graft-versus-host disease, type 1 diabetes, and organ transplantation have shown that it is feasible, safe, and potentially efficacious in some settings. Many ongoing trials in patients with a wide variety of diseases will further enhance our knowledge about the optimal approaches for Treg cell manufacturing and dosing. We review the current preclinical rationale supporting Treg cell therapy in a variety of disease settings ranging from tissue transplantation, autoimmune diseases, and non-immune-mediated inflammatory settings. We point out challenges in development of Treg cell therapy and speculate how synthetic biology can be used to enhance the feasibility and efficacy of Treg cell therapy for autoimmune and autoinflammatory diseases.


Assuntos
Doenças Autoimunes/terapia , Imunoterapia Adotiva , Inflamação/terapia , Linfócitos T Reguladores/transplante , Animais , Humanos , Linfócitos T Reguladores/imunologia
4.
Nature ; 559(7714): 405-409, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29995861

RESUMO

Decades of work have aimed to genetically reprogram T cells for therapeutic purposes1,2 using recombinant viral vectors, which do not target transgenes to specific genomic sites3,4. The need for viral vectors has slowed down research and clinical use as their manufacturing and testing is lengthy and expensive. Genome editing brought the promise of specific and efficient insertion of large transgenes into target cells using homology-directed repair5,6. Here we developed a CRISPR-Cas9 genome-targeting system that does not require viral vectors, allowing rapid and efficient insertion of large DNA sequences (greater than one kilobase) at specific sites in the genomes of primary human T cells, while preserving cell viability and function. This permits individual or multiplexed modification of endogenous genes. First, we applied this strategy to correct a pathogenic IL2RA mutation in cells from patients with monogenic autoimmune disease, and demonstrate improved signalling function. Second, we replaced the endogenous T cell receptor (TCR) locus with a new TCR that redirected T cells to a cancer antigen. The resulting TCR-engineered T cells specifically recognized tumour antigens and mounted productive anti-tumour cell responses in vitro and in vivo. Together, these studies provide preclinical evidence that non-viral genome targeting can enable rapid and flexible experimental manipulation and therapeutic engineering of primary human immune cells.


Assuntos
Reprogramação Celular/genética , Edição de Genes , Genoma Humano/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Autoimunidade/genética , Sistemas CRISPR-Cas/genética , Células Cultivadas , Humanos , Subunidade alfa de Receptor de Interleucina-2/genética , Masculino , Camundongos , Transplante de Neoplasias , Engenharia de Proteínas , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/citologia
5.
Annu Rev Pathol ; 12: 305-330, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-27959633

RESUMO

Engineered T cells are currently in clinical trials to treat patients with cancer, solid organ transplants, and autoimmune diseases. However, the field is still in its infancy. The design, and manufacturing, of T cell therapies is not standardized and is performed mostly in academic settings by competing groups. Reliable methods to define dose and pharmacokinetics of T cell therapies need to be developed. As of mid-2016, there are no US Food and Drug Administration (FDA)-approved T cell therapeutics on the market, and FDA regulations are only slowly adapting to the new technologies. Further development of engineered T cell therapies requires advances in immunology, synthetic biology, manufacturing processes, and government regulation. In this review, we outline some of these challenges and discuss the contributions that pathologists can make to this emerging field.


Assuntos
Doenças Autoimunes/terapia , Terapia Baseada em Transplante de Células e Tecidos , Ensaios Clínicos como Assunto , Neoplasias/terapia , Biologia Sintética , Linfócitos T/imunologia , Animais , Doenças Autoimunes/imunologia , Humanos , Neoplasias/imunologia
6.
J Pathol ; 237(4): 508-19, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26235356

RESUMO

CDK8 is a dissociable kinase module of the Mediator complex and has been shown to play an important role in transcriptional regulation in organisms as diverse as yeast and humans. Recent studies suggest that CDK8 functions as an oncoprotein in melanoma and colon cancer. Importantly, these studies were conducted using in vitro cell line models and the role of CDK8 in tumourigenesis in vivo has not been explored. We have generated a mouse with a Cdk8 conditional knockout allele and examined the consequences of Cdk8 loss on normal tissue homeostasis and tumour development in vivo. Cdk8 deletion in the young adult mouse did not induce any gross or histopathological abnormalities, implying that Cdk8 is largely dispensable for somatic cellular homeostasis. In contrast, Cdk8 deletion in the Apc(Min) intestinal tumour model shortened the animals' survival and increased tumour burden. Although Cdk8 deletion did not affect tumour initiation, intestinal tumour size and growth rate were significantly increased in Cdk8-null animals. Transcriptome analysis performed on Cdk8-null intestinal cells revealed up-regulation of genes that are governed by the Polycomb group (PcG) complex. In support of these findings, Cdk8-null intestinal cells and tumours displayed a reduction in histone H3K27 trimethylation, both globally and at the promoters of a number of PcG-regulated genes involved in oncogenic signalling. Together, our findings uncover a tumour suppressor function for CDK8 in vivo and suggest that the role of CDK8 activity in driving oncogenesis is context-specific. Sequencing data were deposited at GEO (Accession No. GSE71385).


Assuntos
Carcinogênese/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Quinase 8 Dependente de Ciclina/genética , Regulação Neoplásica da Expressão Gênica/genética , Animais , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Proteína Potenciadora do Homólogo 2 de Zeste , Imunofluorescência , Genes APC , Genes Supressores de Tumor , Immunoblotting , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Knockout , Complexo Repressor Polycomb 2/metabolismo , Reação em Cadeia da Polimerase
7.
Proc Natl Acad Sci U S A ; 111(21): 7594-9, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24821784

RESUMO

It is known that many chemotherapeutics induce cellular apoptosis over hours to days. During apoptosis, numerous cellular proteases are activated, most canonically the caspases. We speculated that detection of proteolytic fragments released from apoptotic cells into the peripheral blood may serve as a unique indicator of chemotherapy-induced cell death. Here we used an enzymatic labeling process to positively enrich free peptide α-amines in the plasma of hematologic malignancy patients soon after beginning treatment. This N-terminomic approach largely avoids interference by high-abundance proteins that complicate traditional plasma proteomic analyses. Significantly, by mass spectrometry methods, we found strong biological signatures of apoptosis directly in the postchemotherapy plasma, including numerous caspase-cleaved peptides as well as relevant peptides from apoptotic and cell-stress proteins second mitochondria-derived activator of caspases, HtrA serine peptidase 2, and activating transcription factor 6. We also treated hematologic cancer cell lines with clinically relevant chemotherapeutics and monitored proteolytic fragments released into the media. Remarkably, many of these peptides coincided with those found in patient samples. Overall, we identified 153 proteolytic peptides in postchemotherapy patient plasma as potential indicators of cellular apoptosis. Through targeted quantitative proteomics, we verified that many of these peptides were indeed increased post- vs. prechemotherapy in additional patients. Our findings reveal that numerous proteolytic fragments are released from dying tumor cells. Monitoring posttreatment proteolysis may lead to a novel class of inexpensive, rapid biomarkers of cell death.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/sangue , Fragmentos de Peptídeos/sangue , Proteólise/efeitos dos fármacos , Fator 6 Ativador da Transcrição/sangue , Ensaio de Imunoadsorção Enzimática , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Humanos , Espectrometria de Massas , Proteínas Mitocondriais/sangue , Serina Endopeptidases/sangue
8.
J Immunol ; 191(4): 1594-605, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23858035

RESUMO

microRNAs (miRNA) are essential for regulatory T cell (Treg) function but little is known about the functional relevance of individual miRNA loci. We identified the miR-17-92 cluster as CD28 costimulation dependent, suggesting that it may be key for Treg development and function. Although overall immune homeostasis was maintained in mice with miR-17-92-deficient Tregs, expression of the miR-17-92 miRNA cluster was critical for Treg accumulation and function during an acute organ-specific autoimmune disease in vivo. Treg-specific loss of miR-17-92 expression resulted in exacerbated experimental autoimmune encephalitis and failure to establish clinical remission. Using peptide-MHC tetramers, we demonstrate that the miR-17-92 cluster was specifically required for the accumulation of activated Ag-specific Treg and for differentiation into IL-10-producing effector Treg.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , MicroRNAs/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Animais , Apresentação de Antígeno , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2 , Antígenos CD28/imunologia , Células Cultivadas , Receptores Coestimuladores e Inibidores de Linfócitos T/imunologia , Epitopos de Linfócito T/imunologia , Deleção de Genes , Heterozigoto , Antígenos de Histocompatibilidade Classe II/imunologia , Homeostase , Humanos , Interleucina-10/biossíntese , Ativação Linfocitária , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , MicroRNAs/genética , Glicoproteína Mielina-Oligodendrócito/imunologia , PTEN Fosfo-Hidrolase/deficiência , Fragmentos de Peptídeos/imunologia , Proteínas Proto-Oncogênicas/genética , RNA Longo não Codificante , Adulto Jovem
9.
J Exp Med ; 210(8): 1603-19, 2013 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-23878307

RESUMO

During the initial hours after activation, CD4(+) T cells experience profound changes in gene expression. Co-stimulation via the CD28 receptor is required for efficient activation of naive T cells. However, the transcriptional consequences of CD28 co-stimulation are not completely understood. We performed expression microarray analysis to elucidate the effects of CD28 signals on the transcriptome of activated T cells. We show that the transcription factor DEC1 is highly induced in a CD28-dependent manner upon T cell activation, is involved in essential CD4(+) effector T cell functions, and participates in the transcriptional regulation of several T cell activation pathways, including a large group of CD28-regulated genes. Antigen-specific, DEC1-deficient CD4(+) T cells have cell-intrinsic defects in survival and proliferation. Furthermore, we found that DEC1 is required for the development of experimental autoimmune encephalomyelitis because of its critical role in the production of the proinflammatory cytokines GM-CSF, IFN-γ, and IL-2. Thus, we identify DEC1 as a critical transcriptional mediator in the activation of naive CD4(+) T cells that is required for the development of a T cell-mediated autoimmune disease.


Assuntos
Autoimunidade , Antígenos CD28/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Antígenos CD28/genética , Antígenos CD28/imunologia , Linhagem Celular , Proliferação de Células , Citocinas/biossíntese , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-2/metabolismo , Ativação Linfocitária/genética , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transcriptoma , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
10.
Immunol Rev ; 241(1): 180-205, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21488898

RESUMO

Positive and negative costimulation by members of the CD28 family is critical for the development of productive immune responses against foreign pathogens and their proper termination to prevent inflammation-induced tissue damage. In addition, costimulatory signals are critical for the establishment and maintenance of peripheral tolerance. This paradigm has been established in many animal models and has led to the development of immunotherapies targeting costimulation pathways for the treatment of cancer, autoimmune disease, and allograft rejection. During the last decade, the complexity of the biology of costimulatory pathways has greatly increased due to the realization that costimulation does not affect only effector T cells but also influences regulatory T cells and antigen-presenting cells. Thus, costimulation controls T-cell tolerance through both intrinsic and extrinsic pathways. In this review, we discuss the influence of costimulation on intrinsic and extrinsic pathways of peripheral tolerance, with emphasis on members of the CD28 family, CD28, cytotoxic T-lymphocyte antigen-4 (CTLA-4), and programmed death-1 (PD-1), as well as the downstream cytokine interleukin-1 (IL-2).


Assuntos
Doenças Autoimunes/imunologia , Rejeição de Enxerto/imunologia , Imunoterapia , Neoplasias/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos CD/imunologia , Proteínas Reguladoras de Apoptose/imunologia , Doenças Autoimunes/terapia , Antígeno B7-1/imunologia , Antígenos CD28/imunologia , Antígeno CTLA-4 , Rejeição de Enxerto/terapia , Humanos , Tolerância Imunológica , Imunoterapia/tendências , Neoplasias/terapia , Receptor de Morte Celular Programada 1 , Receptor Cross-Talk
11.
Nucleic Acids Res ; 33(12): 3845-54, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16027109

RESUMO

Tumor necrosis factor (TNF) is a pro-inflammatory cytokine that plays an important role in a variety of infectious and autoimmune disorders. Its transcription is regulated in a stimulus- and cell-type-specific manner via the recruitment of distinct DNA/activator complexes forming secondary structures or enhanceosomes. NFATp, a member of the nuclear factor of activated T cells (NFAT) family of transcription factors, plays a critical role in TNF gene regulation under a variety of conditions. In this study, we show that NFAT5, the most recently described NFAT family member, binds to the TNF promoter in a manner distinct from other NFAT proteins and is a key mediator in the activation of TNF gene transcription during hypertonic stress alone.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Ativação Transcricional , Fator de Necrose Tumoral alfa/genética , Animais , Sítios de Ligação , Linhagem Celular , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Genes Reporter , Camundongos , Mutação , Fatores de Transcrição NFATC , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Pressão Osmótica , Interferência de RNA , RNA Mensageiro/biossíntese , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA