Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Drug Target ; 30(2): 151-165, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34210232

RESUMO

Nanoscale engineering is one of the novel methods to cure multitudes of diseases, such as types of cancers, neurological disorders, and infectious illnesses. Viruses can play a vital role in nanoscale engineering due to their specific properties like minuscule size, high stability in different body conditions, and large-scale production. Viral-like particles (VLPs) as specific nanoscale scaffolds can encapsulate a wide range of cargos, including nucleic acids, proteins, peptides, and drugs. The Exterior portion of VLPs can be changed by genetical or chemical conjugation as well as targeting ligands or peptides. The aforementioned features of VLPs can be used in several applications, such as drug delivery, bioimaging, tissue engineering, vaccine production, and disease detection. This review article attempts to investigate appearance characteristics, modification strategies, and manufacturing methods of VLPs. Additionally, drug delivery to cancer cells as one of the VLPs applications along with different cellular uptake mechanisms of VLPs by cancer cells are chosen for investigation. This review also tries to gather most of the recent studies of drug delivery to cancer cells by VLPs.


Assuntos
Nanopartículas , Neoplasias , Vírus , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Peptídeos
2.
Nanotechnology ; 33(7)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34757959

RESUMO

During recent years, cancer has been recognized as a well-known disorder all over the world. One of the important factors to tackle this problem better than past decades is early diagnosis that takes into practice by state-of-the-art visual equipment for detection cancer cells. Herein, in this research, we synthesized carbon dots with pH-dependent behavior from a green source by hydrothermal method with high quantum yield and blue fluorescence. Folic acid-conjugated carbon dots by an efficient and optimal conjugation method were set upped which determined cancer cells visually. These synthesized and conjugated nanoparticles entered into the cancer cells more comprehensive than normal cells by receptor-mediated endocytosis and could distinguish cancer cells from normal ones by fluorescence imaging. Ultimately, synthesized nanoparticles in this research can be considered as an efficient fluorescent nanoprobe for cancer pre-diagnosis.


Assuntos
Corantes Fluorescentes , Ácido Fólico , Microscopia de Fluorescência/métodos , Pontos Quânticos , Animais , Ácido Fólico/química , Ácido Fólico/metabolismo , Transportadores de Ácido Fólico/química , Transportadores de Ácido Fólico/metabolismo , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Células NIH 3T3 , Tamanho da Partícula
3.
Nanoscale Res Lett ; 16(1): 95, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34032937

RESUMO

The increasing prevalence of cancer, a disease in which rapid and uncontrollable cell growth causes complication and tissue dysfunction, is one of the serious and tense concerns of scientists and physicians. Nowadays, cancer diagnosis and especially its effective treatment have been considered as one of the biggest challenges in health and medicine in the last century. Despite significant advances in drug discovery and delivery, their many adverse effects and inadequate specificity and sensitivity, which usually cause damage to healthy tissues and organs, have been great barriers in using them. Limitation in the duration and amount of these therapeutic agents' administration is also challenging. On the other hand, the incidence of tumor cells that are resistant to typical methods of cancer treatment, such as chemotherapy and radiotherapy, highlights the intense need for innovation, improvement, and development in antitumor drug properties. Liposomes have been suggested as a suitable candidate for drug delivery and cancer treatment in nanomedicine due to their ability to store drugs with different physical and chemical characteristics. Moreover, the high flexibility and potential of liposome structure for chemical modification by conjugating various polymers, ligands, and molecules is a significant pro for liposomes not only to enhance their pharmacological merits but also to improve the effectiveness of anticancer drugs. Liposomes can increase the sensitivity, specificity, and durability of these anti-malignant cell agents in the body and provide remarkable benefits to be applied in nanomedicines. We reviewed the discovery and development of liposomes focusing on their clinical applications to treat diverse sorts of cancers and diseases. How the properties of liposomal drugs can be improved and their opportunity and challenges for cancer therapy were also considered and discussed.

4.
PLoS One ; 15(3): e0230646, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32208468

RESUMO

Pesticides, widely used in modern agriculture, could potentially cause environmental pollution and affect human lives. Hence, the development of a highly sensitive sensing element to detect pesticide residues is crucial for food safety and ecosystem protection. Optical methods based on fluorescence properties provide an ideal approach for screening and quantification of these compounds in different medias including water, plant, and nutritional products. The development of fluorescence emitting carbon dot-based sensors for monitoring pesticides has attracted great attention in recent years. In comparison to other fluorophores, carbon dots have more promising optical features, higher quantum yields and better biocompatibility. This article aims to present a novel fluorescent sensing method of diazinon, glyphosate, and amicarbazone using plant-based carbon dots. A comprehensive characterization of carbon dots obtained from cauliflower was performed by methods including UV-visible, FTIR spectroscopy, fluorometry, AFM, DLS, and zeta sizer. Following this step, carbon dots were used to detect pesticides. The fluorescence quenching property of carbon dots has been utilized to identify detection limit of 0.25, 0.5, and 2 ng ml-1 for diazinon, amicarbazone, and glyphosate, respectively. Also, real sample study revealed that the detection of pesticides accompanied by our developed nano-sensor is repeatable and accurate. According to carbon dots specificity determination, the prepared nano sensor does not have the potential to identify "bromacil" and "dialen super" pesticides but the other three mentioned pesticides are detectable. The results confirm that synthesized green carbon dots are well qualified for application in food safety and environmental monitoring.


Assuntos
Carbono/química , Praguicidas/análise , Pontos Quânticos/química , Espectrometria de Fluorescência/métodos , Diazinon/análise , Monitoramento Ambiental , Contaminação de Alimentos/análise , Glicina/análogos & derivados , Glicina/análise , Limite de Detecção , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Triazóis/análise , Glifosato
5.
Heliyon ; 5(12): e02940, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31872119

RESUMO

BACKGROUND: Pristine carbon dots (CDs) derived from citric acid pyrolysis are used in a variety of biomedical research such as imaging and drug delivery. However, potential cytotoxic effects of pyrolysis temperature on cells is underexplored. To address this need, we studied toxicity of the CDs to breast cancer cells using MTT and LDH assays. In addition, we investigated photo-induced cytotoxicity of the synthesized CDs in a wide concentration range under white light. RESULTS: Our results suggest little cytotoxicity of the CDs after 24 h exposure of cells. Only the high quantum yield CDs caused a significant toxicity to cells at the highest concentrations of 2.0 and 1.5 mg/ml compared to other CDs at similar concentrations. The synthesized CDs entered the cells without any significant cytotoxicity. The CDs also caused a concentration- and irradiation time-dependent photo-induced cytotoxicity. CONCLUSION: The optimization of synthesis conditions from this study may help develop safe and efficient CDs for imaging and drug delivery.

6.
Int J Biol Macromol ; 116: 939-946, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29777803

RESUMO

Since Potato Virus X (PVX) is easily transmitted mechanically between their hosts, its control is difficult. We have previously reported new isolate of this virus (PVX-Iran, GenBank Accession number FJ461343). However, the molecular basis of resistance breaking activity and its relation to capsid protein structure are still not well-understood. SDS-PAGE, ELISA, Western blot and RT-PCR molecular examinations were performed on the inoculated plants Nicotiana benthamiana. The pathological symptoms were related to the PVX isolate. The capsid protein (CP) structure were modeled based on homology and subjected to three independent 80 ns molecular dynamics minimization (GROMACS, OPLS force field) in the SPC water box. The RMSD, RMSF, SASA, and electrostatic properties were retrieved from the trajectories. Flexibility and hydrophilic nature of the N-terminal residues (1-34) of solvated CP could be observed in conformational changes upon minimization. The obtained structure was then docked with NbPCIP1 using ClusPro 2.0. The strong binding affinity of these two proteins (≈-16.0 Kcal mol-1) represents the formation of inclusion body and hence appearance of the symptoms.


Assuntos
Proteínas do Capsídeo/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nicotiana/química , Potexvirus/química , Proteínas do Capsídeo/metabolismo , Potexvirus/metabolismo , Nicotiana/metabolismo , Nicotiana/virologia
7.
Tumour Biol ; 37(1): 1229-36, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26286831

RESUMO

Nanoparticles based on non-pathogenic viruses have opened up a novel sector in nanotechnology. Viral nanoparticles based on plant viruses have clear advantages over any synthetic nanoparticles as they are biocompatible and biodegradable self-assembled and can be produced inexpensively on a large scale. From several such under-development platforms, only a few have been characterized in the target-specific drugs into the cells. Potato virus X is presented as a carrier of the chemotherapeutic drug Herceptin that is currently used as a targeted therapy in (HER2+) breast cancer patients. Here, we used nanoparticles formed from the potato virus X to conjugate the Herceptin (Trastuzumab) monoclonal antibody as a new option in specific targeting of breast cancer. Bioconjugation was performed by EDC/sulfo-N-hydroxysuccinimide (sulfo-NHS) in a two-step protocol. Then, the efficiency of conjugation was investigated by different methods, including sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Western blot, ELISA, Zetasizer, and transmission electron microscopy. SDS-PAGE and Western blot analysis confirmed an 82-kDa protein band that resulted from conjugation of potato virus X (PVX) coat protein (27 kDa) to heavy chain of Herceptin (55 kDa). Zeta potential values for conjugated particles, PVX, and HER were -7.05, -21.4, and -1.48, respectively. We investigated the efficiency of PVX-Herceptin to induce SK-OV-3 and SK-BR-3 cells (HER2 positive cell lines) apoptosis. We therefore counted cells and measured apoptosis by flow cytometry assay, then compared with Herceptin alone. Based on our data, we confirmed the conjugation of PVX and Herceptin. This study suggests that the PVX-Herceptin conjugates enable Herceptin to become more potential therapeutic tools.


Assuntos
Neoplasias da Mama/patologia , Portadores de Fármacos/química , Nanopartículas/química , Potexvirus , Trastuzumab/química , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral/efeitos dos fármacos , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Microscopia Eletrônica de Transmissão , Receptor ErbB-2/imunologia , Nicotiana/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA