Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Genet ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054052

RESUMO

BACKGROUND: Developmental dysplasia of the hip (DDH), formerly termed congenital dislocation of the hip, is the most common congenital disease of the musculoskeletal system in newborns. While familial predilection to DDH has been well documented, the molecular genetics/pathways of this common disorder are poorly understood. METHODS: Linkage analysis and whole exome sequencing; real-time PCR studies of skin fibroblasts. RESULTS: Consanguineous Bedouin kindred presented with DDH with apparent autosomal recessive heredity. Linkage analysis and whole exome sequencing delineated a single 3.2 Mbp disease-associated chromosome 1 locus (maximal multipoint Logarithm of the Odds score 2.3), containing a single homozygous variant with a relevant expression pattern: addition of threonine in TRIM33 (NM_015906.4); c.1648_1650dup. TRIM33 encodes a protein that acts both in the TGF-ß and the BMP pathways; however, it has been mostly studied regarding its function in the TGF-ß pathway. Since BMPs are known to act in bone formation, we focused on the BMP pathway, in which TRIM33 functions as a transcription factor, both an activator and repressor. Skin fibroblasts of two affected girls and a heterozygous TRIM33 variant carrier were assayed through reverse-transcription PCR for expression of genes known to be downstream of TRIM33 in the BMP pathway: fibroblasts of affected individuals showed significantly reduced expression of DLX5, significantly increased expression of BGLAP, increased expression of ALPL and no change in expression of RUNX2 or of TRIM33 itself. CONCLUSIONS: DDH can be caused by a biallelic variant in TRIM33, affecting the BMP pathway.

2.
Genes (Basel) ; 15(3)2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38540414

RESUMO

POT1 (Protection of Telomeres 1) is a key component of the six-membered shelterin complex that plays a critical role in telomere protection and length regulation. Germline variants in the POT1 gene have been implicated in predisposition to cancer, primarily to melanoma and chronic lymphocytic leukemia (CLL). We report the identification of POT1 p.(I78T), previously ranked with conflicting interpretations of pathogenicity, as a founder pathogenic variant among Ashkenazi Jews (AJs) and describe its unique clinical landscape. A directed database search was conducted for individuals referred for genetic counselling from 2018 to 2023. Demographic, clinical, genetic, and pathological data were collected and analyzed. Eleven carriers, 25 to 67 years old, from ten apparently unrelated families were identified. Carriers had a total of 30 primary malignancies (range 1-6); nine carriers (82%) had recurrent melanoma between the ages of 25 and 63 years, three carriers (27%) had desmoid tumors, three (27%) had papillary thyroid cancer (PTC), and five women (63% of female carriers) had breast cancer between the ages of 44 and 67 years. Additional tumors included CLL; sarcomas; endocrine tumors; prostate, urinary, and colorectal cancers; and colonic polyps. A review of a local exome database yielded an allelic frequency of the variant of 0.06% among all ethnicities and of 0.25% in AJs. A shared haplotype was found in all carriers tested. POT1 p.(I78T) is a founder disease-causing variant associated with early-onset melanoma and additional various solid malignancies with a high tumor burden. We advocate testing for this variant in high-risk patients of AJ descent. The inclusion of POT1 in germline panels for various types of cancer is warranted.


Assuntos
Leucemia Linfocítica Crônica de Células B , Melanoma , Neoplasias Cutâneas , Neoplasias da Glândula Tireoide , Masculino , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Melanoma/genética , Leucemia Linfocítica Crônica de Células B/genética , Proteínas de Ligação a Telômeros/genética , Neoplasias Cutâneas/genética , Complexo Shelterina
3.
Am J Med Genet A ; 191(12): 2806-2812, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37724761

RESUMO

Frontonasal dysplasia (FND) refers to a group of rare developmental disorders characterized by abnormal morphology of the craniofacial region. We studied a family manifesting with clinical features typical for FND2 including neurobehavioral abnormalities, hypotrichosis, hypodontia, and facial dysmorphism. Whole-exome sequencing analysis identified a novel heterozygous frameshift insertion in ALX4 (c.985_986insGTGC, p.Pro329Argfs*115), encoding aristaless homeobox 4. This and a previously reported dominant FND2-causing variant are predicted to result in the formation of a similar abnormally elongated protein tail domain. Using a reporter assay, we showed that the elongated ALX4 displays increased activity. ALX4 negatively regulates the Wnt/ß-catenin pathway and accordingly, patient keratinocytes showed altered expression of genes associated with the WNT/ß-catenin pathway, which in turn may underlie ectodermal manifestations in FND2. In conclusion, dominant FND2 with ectodermal dysplasia results from frameshift variants in ALX4 exerting a gain-of-function effect.


Assuntos
Anormalidades Craniofaciais , Displasia Ectodérmica , Humanos , Genes Homeobox , beta Catenina/genética , Face , Anormalidades Craniofaciais/genética , Displasia Ectodérmica/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
4.
Harefuah ; 162(6): 362-365, 2023 Jun.
Artigo em Hebraico | MEDLINE | ID: mdl-37394438

RESUMO

INTRODUCTION: Piebaldism is the dominantly inherited skin disorder clinically characterized by congenital stable and well circumscribed patches of leukoderma (depigmented skin) of ventral distribution, involving central forehead, frontal chest and abdomen and central portion of limbs, and by localized poliosis (white hair). Inherited or de novo mutations in proto-oncogene KIT, encoding the transmembrane tyrosine kinase receptor c-kit, underly the majority of piebaldism cases. Piebaldism is a disorder characterized by incomplete penetrance and variable expressivity.


Assuntos
Piebaldismo , Humanos , Piebaldismo/genética , Proteínas Proto-Oncogênicas c-kit/genética , Manchas Café com Leite/genética
5.
Genet Med ; 24(5): 1085-1095, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35168889

RESUMO

PURPOSE: Palmoplantar keratodermas (PPKs) form a group of disorders characterized by thickening of palm and sole skin. Over the past 2 decades, many types of inherited PPKs have been found to result from abnormal expression, processing, or function of adhesion proteins. METHODS: We used exome and direct sequencing to detect causative pathogenic variants. Functional analysis of these variants was conducted using reverse transcription quantitative polymerase chain reaction, immunofluorescence confocal microscopy, immunoblotting, a promoter reporter assay, and chromatin immunoprecipitation. RESULTS: We identified 2 heterozygous variants (c.1226A>G and c.633_634dupGT) in KLF4 in 3 individuals from 2 different unrelated families affected by a dominant form of PPK. Immunofluorescence staining for a number of functional markers revealed reduced epidermal DSG1 expression in patients harboring heterozygous KLF4 variants. Accordingly, human keratinocytes either transfected with constructs expressing these variants or downregulated for KLF4 displayed reduced DSG1 expression, which in turn has previously been found to be associated with PPK. A chromatin immunoprecipitation assay confirmed direct binding of KLF4 to the DSG1 promoter region. The ability of mutant KLF4 to transactivate the DSG1 promoter was significantly decreased when compared with wild-type KLF4. CONCLUSION: Loss-of-function variants in KLF4 cause a novel form of dominant PPK and show its importance in the regulation of epidermal differentiation.


Assuntos
Ceratodermia Palmar e Plantar , Humanos , Sequenciamento do Exoma , Heterozigoto , Ceratodermia Palmar e Plantar/diagnóstico , Ceratodermia Palmar e Plantar/patologia
6.
J Invest Dermatol ; 140(3): 624-635.e7, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31493396

RESUMO

Dermatofibromas are common benign skin lesions, the etiology of which is poorly understood. We identified two unrelated pedigrees in which there was autosomal dominant transmission of multiple dermatofibromas. Whole exome sequencing revealed a rare shared heterozygous missense variant in the F13A1 gene encoding factor XIII subunit A (FXIII-A), a transglutaminase involved in hemostasis, wound healing, tumor growth, and apoptosis. The variant (p.Lys679Met) has an allele frequency of 0.0002 and is predicted to be a damaging mutation. Recombinant human Lys679Met FXIII-A demonstrated reduced fibrin crosslinking activity in vitro. Of note, the treatment of fibroblasts with media containing Lys679Met FXIII-A led to enhanced adhesion, proliferation, and type I collagen synthesis. Immunostaining revealed co-localization between FXIII-A and α4ß1 integrins, more prominently for Lys679Met FXIII-A than the wild type. In addition, both the α4ß1 inhibitors and the mutation of the FXIII-A Isoleucine-Leucine-Aspartate-Threonine (ILDT) motif prevented Lys679Met FXIII-A-dependent proliferation and collagen synthesis of fibroblasts. Our data suggest that the Lys679Met mutation may lead to a conformational change in the FXIII-A protein that enhances α4-integrin binding and provides insight into an unexpected role for FXIII-A in the pathobiology of familial dermatofibroma.


Assuntos
Fator XIII/genética , Fibrina/metabolismo , Histiocitoma Fibroso Benigno/genética , Padrões de Herança , Pele/patologia , Domínio Catalítico/genética , Proliferação de Células/genética , Colágeno Tipo I/biossíntese , Análise Mutacional de DNA , Fator XIII/metabolismo , Feminino , Fibroblastos , Células HEK293 , Histiocitoma Fibroso Benigno/patologia , Humanos , Integrina alfa4/metabolismo , Masculino , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Linhagem , Conformação Proteica em alfa-Hélice/genética , Conformação Proteica em Folha beta/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Pele/citologia , Relação Estrutura-Atividade , Sequenciamento do Exoma
7.
J Invest Dermatol ; 138(8): 1736-1743, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29758285

RESUMO

Peeling skin syndromes form a large and heterogeneous group of inherited disorders characterized by superficial detachment of the epidermal cornified cell layers, often associated with inflammatory features. Here we report on a consanguineous family featuring noninflammatory peeling of the skin exacerbated by exposure to heat and mechanical stress. Whole exome sequencing revealed a homozygous nonsense mutation in FLG2, encoding filaggrin 2, which cosegregated with the disease phenotype in the family. The mutation was found to result in decreased FLG2 RNA levels as well as almost total absence of filaggrin 2 in the patient epidermis. Filaggrin 2 was found to be expressed throughout the cornified cell layers and to colocalize with corneodesmosin that plays a crucial role in maintaining cell-cell adhesion in this region of the epidermis. The absence of filaggrin 2 in the patient skin was associated with markedly decreased corneodesmosin expression, which may contribute to the peeling phenotype displayed by the patients. Accordingly, using the dispase dissociation assay, we showed that FLG2 downregulation interferes with keratinocyte cell-cell adhesion. Of particular interest, this effect was aggravated by temperature elevation, consistent with the clinical phenotype. Restoration of corneodesmosin levels by ectopic expression rescued cell-cell adhesion. Taken together, the present data suggest that filaggrin 2 is essential for normal cell-cell adhesion in the cornified cell layers.


Assuntos
Adesão Celular/genética , Dermatite Esfoliativa/genética , Epiderme/patologia , Proteínas S100/genética , Dermatopatias Genéticas/genética , Adulto , Idoso , Árabes/genética , Biópsia , Células Cultivadas , Códon sem Sentido , Consanguinidade , Dermatite Esfoliativa/patologia , Epiderme/ultraestrutura , Feminino , Proteínas Filagrinas , Homozigoto , Humanos , Queratinócitos/patologia , Masculino , Microscopia Eletrônica , Cultura Primária de Células , Dermatopatias Genéticas/patologia , Sequenciamento do Exoma
8.
Am J Dermatopathol ; 39(6): 440-444, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28121638

RESUMO

Epidermolytic ichthyosis (EI) is a rare disorder of cornification caused by mutations in KRT1 and KRT10, encoding two suprabasal epidermal keratins. Because of the variable clinical features and severity of the disease, histopathology is often required to correctly direct the molecular analysis. EI is characterized by hyperkeratosis and vacuolar degeneration of the upper epidermis, also known as epidermolytic hyperkeratosis, hence the name of the disease. In the current report, the authors describe members of 2 families presenting with clinical features consistent with EI. The patients were shown to carry classical mutations in KRT1 or KRT10, but did not display epidermolytic changes on histology. These observations underscore the need to remain aware of the limitations of pathological features when considering a diagnosis of EI.


Assuntos
Hiperceratose Epidermolítica/patologia , Pele/patologia , Biópsia , Pré-Escolar , Análise Mutacional de DNA , Marcadores Genéticos , Predisposição Genética para Doença , Hereditariedade , Humanos , Hiperceratose Epidermolítica/genética , Imuno-Histoquímica , Queratina-1/genética , Queratina-10/genética , Masculino , Mutação , Linhagem , Fenótipo , Valor Preditivo dos Testes , Pele/química
9.
PLoS Genet ; 12(10): e1006369, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27736875

RESUMO

Despite recent advances in our understanding of the pathogenesis of ectodermal dysplasias (EDs), the molecular basis of many of these disorders remains unknown. In the present study, we aimed at elucidating the genetic basis of a new form of ED featuring facial dysmorphism, scalp hypotrichosis and hypodontia. Using whole exome sequencing, we identified 2 frameshift and 2 missense mutations in TSPEAR segregating with the disease phenotype in 3 families. TSPEAR encodes the thrombospondin-type laminin G domain and EAR repeats (TSPEAR) protein, whose function is poorly understood. TSPEAR knock-down resulted in altered expression of genes known to be regulated by NOTCH and to be involved in murine hair and tooth development. Pathway analysis confirmed that down-regulation of TSPEAR in keratinocytes is likely to affect Notch signaling. Accordingly, using a luciferase-based reporter assay, we showed that TSPEAR knock-down is associated with decreased Notch signaling. In addition, NOTCH1 protein expression was reduced in patient scalp skin. Moreover, TSPEAR silencing in mouse hair follicle organ cultures was found to induce apoptosis in follicular epithelial cells, resulting in decreased hair bulb diameter. Collectively, these observations indicate that TSPEAR plays a critical, previously unrecognized role in human tooth and hair follicle morphogenesis through regulation of the Notch signaling pathway.


Assuntos
Displasia Ectodérmica/genética , Morfogênese/genética , Proteínas/genética , Receptor Notch1/biossíntese , Animais , Diferenciação Celular/genética , Análise Mutacional de DNA , Displasia Ectodérmica/patologia , Mutação da Fase de Leitura/genética , Regulação da Expressão Gênica no Desenvolvimento , Folículo Piloso/crescimento & desenvolvimento , Humanos , Camundongos , Linhagem , Receptor Notch1/genética , Transdução de Sinais/genética , Dente/crescimento & desenvolvimento , Dente/metabolismo
10.
Pediatr Dermatol ; 33(3): 322-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27087580

RESUMO

BACKGROUND: Spiny hyperkeratosis refers to a rare clinical phenotype characterized by nonfollicular keratotic projections and sometimes associated with other acquired and inherited conditions. We describe a case of congenital patterned spiny hyperkeratosis. METHODS: To identify the cause of this disorder, we used a combination of whole exome sequencing, direct sequencing and TaqMan assay. RESULTS: We found that the peculiar clinical features displayed by the patient are due to somatic mosaicism for a heterozygous mutation in the GJB2 gene. CONCLUSION: Because histopathologic examination of two independent biopsies did not reveal porokeratotic eccrine ostial and dermal duct nevus (PEODDN), previously reported to result from somatic mutations in GJB2, it appears that mutations in this gene can cause nevoid spiny hyperkeratosis in the context of PEODDN or as an isolated finding.


Assuntos
Conexinas/genética , Mosaicismo/embriologia , Mutação , Poroceratose/genética , Poroceratose/patologia , Biópsia por Agulha , Conexina 26 , Análise Mutacional de DNA , Glândulas Écrinas/patologia , Feminino , Genótipo , Humanos , Imuno-Histoquímica , Lactente , Polimorfismo de Nucleotídeo Único , Poroceratose/diagnóstico , Doenças Raras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA