RESUMO
Antibody-producing plasma cells fuel humoral immune responses. They also contribute to autoimmune diseases such as systemic lupus erythematosus or IgA nephropathy. Interleukin-6 and the tumor necrosis factor (TNF) family ligands BAFF (B cell-activating factor) and APRIL (a proliferation-inducing ligand) participate in plasma cell survival. BAFF binds to three receptors, BAFFR (BAFF receptor), TACI (transmembrane activator and CAML interactor), and BCMA (B cell maturation antigen), while APRIL binds to TACI, BCMA, and proteoglycans. However, which ligand-receptor pair(s) are required to maintain plasma cells in different body locations remains unknown. Here, by combining mouse genetic and pharmacological approaches, we found that plasma cells required BCMA and/or TACI but not BAFFR. BCMA responded exclusively to APRIL, while TACI responded to both BAFF and APRIL, identifying three self-sufficient ligand-receptor pairs for plasma cell maintenance: BAFF-TACI, APRIL-TACI, and APRIL-BCMA. Together, these actors accounted for 90% of circulating antibodies. In BAFF-ko mice, the reduction of plasma cells upon APRIL inhibition indicated that APRIL could function in the absence of BAFF-APRIL heteromers. No evidence was found that in the absence of BCMA and TACI, binding of APRIL to proteoglycans would help maintain plasma cells. IL-6, alone or together with BAFF and APRIL, supported mainly splenic plasmablasts and plasma cells and contributed to circulating IgG but not IgA levels. In conclusion, survival factors for plasma cells can vary with body location and with the antibody isotype that plasma cells produce. To efficiently target plasma cells, in particular IgA-producing ones, dual inhibition of BAFF and APRIL is required.
Assuntos
Fator Ativador de Células B , Receptor do Fator Ativador de Células B , Antígeno de Maturação de Linfócitos B , Interleucina-6 , Proteína Transmembrana Ativadora e Interagente do CAML , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Animais , Fator Ativador de Células B/imunologia , Fator Ativador de Células B/metabolismo , Fator Ativador de Células B/genética , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Antígeno de Maturação de Linfócitos B/imunologia , Antígeno de Maturação de Linfócitos B/metabolismo , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Proteína Transmembrana Ativadora e Interagente do CAML/imunologia , Interleucina-6/metabolismo , Interleucina-6/imunologia , Camundongos , Receptor do Fator Ativador de Células B/metabolismo , Receptor do Fator Ativador de Células B/imunologia , Receptor do Fator Ativador de Células B/genética , Plasmócitos/imunologia , Plasmócitos/metabolismo , Camundongos Knockout , Células Produtoras de Anticorpos/imunologia , Células Produtoras de Anticorpos/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Background: Chronic Lymphocytic Leukemia (CLL) is characterized by the expansion of CD19+ CD5+ B cells but its origin remains debated. Mutated CLL may originate from post-germinal center B cells and unmutated CLL from CD5+ mature B cell precursors. Irrespective of precursor types, events initiating CLL remain unknown. The cytokines BAFF and APRIL each play a significant role in CLL cell survival and accumulation, but their involvement in disease initiation remains unclear. Methods: We generated novel CLL models lacking BAFF or APRIL. In vivo experiments were conducted to explore the impact of BAFF or APRIL loss on leukemia initiation, progression, and dissemination. Additionally, RNA-seq and quantitative real-time PCR were performed to unveil the transcriptomic signature influenced by BAFF in CLL. The direct role of BAFF in controlling the expression of tumor-promoting genes was further assessed in patient-derived primary CLL cells ex-vivo. Results: Our findings demonstrate a crucial role for BAFF, but not APRIL, in the initiation and dissemination of CLL cells. In the absence of BAFF or its receptor BAFF-R, the TCL1 transgene only increases CLL cell numbers in the peritoneal cavity, without dissemination into the periphery. While BAFF binding to BAFF-R is dispensable for peritoneal CLL cell survival, it is necessary to activate a tumor-promoting gene program, potentially linked to CLL initiation and progression. This direct role of BAFF in controlling the expression of tumor-promoting genes was confirmed in patient-derived primary CLL cells ex-vivo. Conclusions: Our study, involving both mouse and human CLL cells, suggests that BAFF might initiate CLL through mechanisms independent of cell survival. Combining current CLL therapies with BAFF inhibition could offer a dual benefit by reducing peripheral tumor burden and suppressing transformed CLL cell output.
Assuntos
Leucemia Linfocítica Crônica de Células B , Animais , Humanos , Camundongos , Linfócitos B/metabolismo , Sobrevivência Celular/genética , Leucemia Linfocítica Crônica de Células B/patologiaRESUMO
Atherosclerotic cardiovascular disease causes heart attacks and strokes, which are the leading causes of mortality worldwide1. The formation of atherosclerotic plaques is initiated when low-density lipoproteins bind to heparan-sulfate proteoglycans (HSPGs)2 and become trapped in the subendothelial space of large and medium size arteries, which leads to chronic inflammation and remodelling of the artery wall2. A proliferation-inducing ligand (APRIL) is a cytokine that binds to HSPGs3, but the physiology of this interaction is largely unknown. Here we show that genetic ablation or antibody-mediated depletion of APRIL aggravates atherosclerosis in mice. Mechanistically, we demonstrate that APRIL confers atheroprotection by binding to heparan sulfate chains of heparan-sulfate proteoglycan 2 (HSPG2), which limits the retention of low-density lipoproteins, accumulation of macrophages and formation of necrotic cores. Indeed, antibody-mediated depletion of APRIL in mice expressing heparan sulfate-deficient HSPG2 had no effect on the development of atherosclerosis. Treatment with a specific anti-APRIL antibody that promotes the binding of APRIL to HSPGs reduced experimental atherosclerosis. Furthermore, the serum levels of a form of human APRIL protein that binds to HSPGs, which we termed non-canonical APRIL (nc-APRIL), are associated independently of traditional risk factors with long-term cardiovascular mortality in patients with atherosclerosis. Our data reveal properties of APRIL that have broad pathophysiological implications for vascular homeostasis.
Assuntos
Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Proteoglicanas de Heparan Sulfato/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Antígeno de Maturação de Linfócitos B/metabolismo , Sítios de Ligação , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/mortalidade , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/sangue , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/deficiênciaRESUMO
B cell activating factor (BAFF or BLyS), an important cytokine for B cell survival and humoral immune responses, is targeted in the clinic for the treatment of systemic lupus erythematosus. This review focuses on the structure, function and inhibition profiles of membrane-bound BAFF, soluble BAFF 3-mer and soluble BAFF 60-mer, all of which have distinct properties. BAFF contains a loop region not required for receptor binding but essential for receptor activation via promotion of BAFF-to-BAFF contacts. This loop region additionally allows formation of BAFF 60-mer, in which epitopes of the BAFF inhibitor belimumab are inaccessible. If 60-mer forms in humans, it is predicted to be short-lived and to act locally because adult serum contains a BAFF 60-mer dissociating activity. Cord blood contains elevated levels of BAFF, part of which displays attributes of 60-mer, suggesting a role for this form of BAFF in the development of foetal or neonate B cells.
Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Fator Ativador de Células B , Imunossupressores/farmacologia , Fator Ativador de Células B/antagonistas & inibidores , Fator Ativador de Células B/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , HumanosRESUMO
Genetic deficiency of ectodysplasin A (EDA) causes X-linked hypohidrotic ectodermal dysplasia, a congenital condition characterized by the absence or abnormal formation of sweat glands, teeth, and several skin appendages. Stimulation of the EDA receptor (EDAR) with agonists in the form of recombinant EDA or anti-EDAR antibodies can compensate for the absence of Eda in a mouse model of Eda deficiency, provided that agonists are administered in a timely manner during fetal development. Here we provide detailed protocols for the administration of EDAR agonists or antagonists, or other proteins, by the intravenous, intraperitoneal, and intra-amniotic routes as well as protocols to collect blood, to visualize sweat gland function, and to prepare skulls in mice.
Assuntos
Receptor Edar/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Vias de Administração de Medicamentos , Displasia Ectodérmica/tratamento farmacológico , Displasia Ectodérmica/genética , Displasia Ectodérmica/metabolismo , Receptor Edar/genética , Camundongos , Fenótipo , Proteínas Recombinantes/administração & dosagem , Resultado do TratamentoRESUMO
BACKGROUND AND PURPOSE: The TNF family ligands, B cell activating factor of the TNF family (BAFF, also known as B lymphocyte stimulator, BLyS) and a proliferation-inducing ligand (APRIL), share the transmembrane activator and calcium-modulator and cyclophilin ligand (CAML)-interactor (TACI) as one of their common receptors. Atacicept, a chimeric recombinant TACI/IgG1-Fc fusion protein, inhibits both ligands. TACI and APRIL also bind to proteoglycans and to heparin that is structurally related to proteoglycans. It is unknown whether the portion of TACI contained in atacicept can bind directly to proteoglycans, or indirectly via APRIL, and whether this could interfere with the anti-coagulant properties of heparin. EXPERIMENTAL APPROACH: Binding of atacicept and APRIL to proteoglycan-positive cells was measured by FACS. Activities of heparin and atacicept were measured with activated factor Xa inhibition and cell-based assays. Effects of heparin on circulating atacicept was monitored in mice. KEY RESULTS: Atacicept did not bind to proteoglycan-positive cells, but when complexed to APRIL could do so indirectly via APRIL. Multimers of atacicept obtained after exposure to cysteine or BAFF 60-mer bound directly to proteoglycans. Atacicept alone, or in complex with APRIL, or in a multimeric form did not interfere with heparin activity in vitro. Conversely, heparin did not influence inhibition of BAFF and APRIL by atacicept and did not change circulating levels of atacicept. CONCLUSIONS AND IMPLICATIONS: Lack of detectable interference of APRIL-bound or free atacicept on heparin activity makes it unlikely that atacicept at therapeutic doses will interfere with the function of heparin in vivo.
Assuntos
Linfócitos B/efeitos dos fármacos , Citocinas/antagonistas & inibidores , Heparina/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Animais , Linfócitos B/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Fator Xa/metabolismo , Feminino , Células HEK293 , Heparina/administração & dosagem , Heparina/sangue , Humanos , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/sangue , Relação Estrutura-AtividadeRESUMO
The B cell survival factor (TNFSF13B/BAFF) is often elevated in autoimmune diseases and is targeted in the clinic for the treatment of systemic lupus erythematosus. BAFF contains a loop region designated the flap, which is dispensable for receptor binding. Here we show that the flap of BAFF has two functions. In addition to facilitating the formation of a highly active BAFF 60-mer as shown previously, it also converts binding of BAFF to TNFRSF13C (BAFFR) into a signaling event via oligomerization of individual BAFF-BAFFR complexes. Binding and activation of BAFFR can therefore be targeted independently to inhibit or activate the function of BAFF. Moreover, structural analyses suggest that the flap of BAFF 60-mer temporarily prevents binding of an anti-BAFF antibody (belimumab) but not of a decoy receptor (atacicept). The observed differences in profiles of BAFF inhibition may confer distinct biological and clinical efficacies to these therapeutically relevant inhibitors.