Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 234(9): 15279-15287, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30697725

RESUMO

Neuroregeneration strategies involve multiple factors to stimulate nerve regeneration. Neural support with chemical and physical cues to optimize neural growth and replacing the lesion neuron and axons are crucial for designing neural scaffolds, which is a promising treatment approach. In this study, polypyrrole polymerization and its functionalization at the interface developed by glycine and gelatin for further optimization of cellular response. Nanofibrous scaffolds were fabricated by electrospinning of polyvinyl alcohol and chitosan solutions. The electrospun scaffolds were polymerized on the surface by pyrrole monomers to form an electroactive interface for further applications in neural tissue engineering. The polymerized polypyrrole showed a positive zeta potential value of 57.5 ± 5.46 mV. The in vitro and in vivo biocompatibility of the glycine and gelatin-functionalized polypyrrole-coated scaffolds were evaluated. No inflammatory cells were observed for the implanted scaffolds. Further, DAPI nucleus staining showed a superior cell attachment on the gelatin-functionalized polypyrrole-coated scaffolds. The topography and tuned positively charged polypyrrole interface with gelatin functionalization is expected to be particularly efficient physical and chemical simultaneous factors for promoting neural cell adhesion.

2.
Res Vet Sci ; 124: 444-451, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29031416

RESUMO

In current study we aimed to coat the PLLA scaffold with zinc (Zn) silicate mineral nanoparticles. Then, using equine adipose-derived stem cells (ASCs) we intended to compare the osteogenic induction potency of Zn silicate mineral-coated PLLA scaffold with uncoated PLLA scaffold and tissue culture plastic (TCPS). Adipose tissues were collected from 3 horses, and isolation of ASCs was achieved by enzymatic digestion. PLLA scaffold was successfully prepared using a phase separation method and coated with Zn silicate mineral nanoparticles. The coating efficiency was then characterized by scanning electron microscopy and further evaluated with the application of fourier transform infrared microscopic imaging. Viability and growth characteristics of ASCs on TCPS, uncoated and coated PLAA scaffolds were investigated by MTT assay. Alizarin Red staining was performed for determination of calcium deposition following the osteogenic induction. Furthermore, other common osteogenic markers such as alkaline phosphatase (ALP) activity, calcium content, as well as osteogenic (Runx2, ALP, osteonectin, and collagen I) marker genes were also evaluated. Our data showed that Zn silicate mineral nanoparticles was coated successfully on PLLA scaffold and such scaffold had no detrimental effect on cell growth rate as indicated by MTT assay. Moreover, ASCs that differentiated on Zn silicate mineral-coated PLLA scaffold indicated higher ALP activity, more calcium content, and higher expression of bone-related genes than that on uncoated PLLA scaffold and TCPS. Adequate proliferation rate and higher expression of osteogenic markers of stem cells, provides this scaffold as a suitable substrate to support proliferation and differentiation of ASCs in equine.


Assuntos
Cavalos/crescimento & desenvolvimento , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Osteogênese/efeitos dos fármacos , Silicatos/administração & dosagem , Alicerces Teciduais/veterinária , Compostos de Zinco/administração & dosagem , Tecido Adiposo/citologia , Animais , Minerais/administração & dosagem
3.
In Vitro Cell Dev Biol Anim ; 53(4): 371-380, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28039620

RESUMO

A combination of nanotopographical cues and surface modification of collagen and fibronectin is a potential platform in primordial germ cells (PGCs) differentiation. In the present study, the synergistic effect of nanotopography and surface modification on differentiation of nuclear transfer embryonic stem cells (nt-ESCs) toward PGC lineage was investigated. In order to achieve this goal, poly-anyline (PANi) was mix within poly-L-lactic acid (PLLA). Afterward, the random composite mats were fabricated using PLLA and PANi mix solution. The nanofiber topography notably upregulated the expressions of prdm14, mvh and c-kit compared with tissue culture polystyrene (TCP). Moreover, the combination of nanofiber topography and surface modification resulted in more enhancement of PGCs differentiation compared with non-modified nanofibrous scaffold. Additionally, gene expression results showed that mvh and c-kit were expressed at higher intensity in cells exposed to collagen and fibronectin rather than collagen or fibronectin solitary. These results demonstrated the importance of combined effect of collagen and fibronectin in order to develop a functional extracellular matrix (ECM) mimic in directing stem cell fate and the potential of such biofunctional scaffolds for treatment of infertility.


Assuntos
Diferenciação Celular , Condutividade Elétrica , Células-Tronco Embrionárias/citologia , Células Germinativas/citologia , Técnicas de Transferência Nuclear , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Compostos de Anilina/química , Animais , Proliferação de Células , Forma Celular , Sobrevivência Celular , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/ultraestrutura , Regulação da Expressão Gênica , Camundongos , Nanofibras/ultraestrutura , Poliésteres/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração
4.
Biologicals ; 43(5): 349-54, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26239678

RESUMO

Stem cells therapy is considered as an efficient strategy for the treatment of some diseases. Nevertheless, some obstacles such as probability of rejection by the immune system limit applications of this strategy. Therefore, several efforts have been made to overcome this among which using the induced pluripotent stem cells (iPSCs) and nuclear transfer embryonic stem cell (nt-ESCs) are the most efficient strategies. The objective of this study was to evaluate the differentiation potential of the nt-ESCs to lymphoid lineage in the presence of IL-7, IL-3, FLT3-ligand and TPO growth factors in vitro. To this end, the nt-ESCs cells were prepared and treated with aforementioned growth factors for 7 and 14 days. Then, the cells were examined for expression of lymphoid markers (CD3, CD25, CD127 and CD19) by quantitative PCR (q-PCR) and flow cytometry. An increased expression of CD19 and CD25 markers was observed in the treated cells compared with the negative control samples by day 7. After 14 days, the expression level of all the tested CD markers significantly increased in the treated groups in comparison with the control. The current study reveals the potential of the nt-ESCs in differentiation to lymphoid lineage in the presence of defined growth factors.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Tecido Linfoide/citologia , Técnicas de Transferência Nuclear , Animais , Antígenos CD/imunologia , Linhagem da Célula , Células Cultivadas , Citometria de Fluxo , Tecido Linfoide/imunologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA