Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141328, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296215

RESUMO

Due to the expansive use of tetracycline antibiotics (TCs) to treat various infectious diseases in humans and animals, their presence in the environment has created many challenges for human societies. Therefore, providing green and cost-effective solutions for their effective removal has become an urgent need. Here, we will introduce 2D/2D p-n heterostructures that exhibit excellent sonophotocatalytic/photocatalytic properties for water-soluble pollutant removal. In this contribution, for the first time, ß- Ni(OH)2 nanosheets were synthesized through visible-light-induced photodeposition of different amounts of nickel on ZnO nanosheets (ß-Ni(x)/ZNs) to fabricate 2D/2D p-n heterostructures. The PXRD patterns confirmed the formation of wurtzite phase for ZNs and the hexagonal crystal structure of ß-Ni(OH)2. The FESEM and TEM micrographs showed that the ß-Ni(OH)2 sheets were dispersed on the surface of ZNs and formed 2D/2D p-n heterojunction in ß-Ni(x)/ZNs samples. With the photodeposition of ß-Ni(OH)2 nanosheets on ZNs, the surface area, pore volume, and pore diameter of ß-Ni(x)/ZNs heterostructures have increased compared to ZNs, which can have a positive effect on the sonophotocatalytic/photocatalytic performance of ZNs. The degradation experiments showed that ß-Ni(0.1)/ZNs and ß-Ni(0.4)/ZNs have the highest degradation percentage in photocatalytic (51 %) and sonophotocatalytic (71 %) degradation of TC, respectively. Finally, the sonophotocatalytic/photocatalytic degradation process of TC was systematically validated through modeling with three powerful and supervised machine learning algorithms, including Support Vector Regression (SVR), Artificial Neural Networks (ANNs), and Stochastic Gradient Boosting (SGB). Five statistical criteria including R2, SAE, MSE, SSE, and RMSE were calculated for model validation. It was observed that the developed SGB algorithm was the most reliable model for predicting the degradation percent of TC. The results revealed that using fabricated 2D/2D p-n heterojunctions (ß-Ni(x)/ZNs) is more sustainable than the conventional ZnO photocatalytic systems in practical applications.


Assuntos
Óxido de Zinco , Humanos , Óxido de Zinco/química , Níquel/química , Antibacterianos/química , Tetraciclina , Redes Neurais de Computação
2.
Nanomaterials (Basel) ; 13(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36770535

RESUMO

The human nature of curiosity, wonder, and ingenuity date back to the age of humankind. In parallel with our history of civilization, interest in scientific approaches to unravel mechanisms underlying natural phenomena has been developing. Recent years have witnessed unprecedented growth in research in the area of pharmaceuticals and medicine. The optimism that nanotechnology (NT) applied to medicine and drugs is taking serious steps to bring about significant advances in diagnosing, treating, and preventing disease-a shift from fantasy to reality. The growing interest in the future medical applications of NT leads to the emergence of a new field for nanomaterials (NMs) and biomedicine. In recent years, NMs have emerged as essential game players in modern medicine, with clinical applications ranging from contrast agents in imaging to carriers for drug and gene delivery into tumors. Indeed, there are instances where nanoparticles (NPs) enable analyses and therapies that cannot be performed otherwise. However, NPs also bring unique environmental and societal challenges, particularly concerning toxicity. Thus, clinical applications of NPs should be revisited, and a deep understanding of the effects of NPs from the pathophysiologic basis of a disease may bring more sophisticated diagnostic opportunities and yield more effective therapies and preventive features. Correspondingly, this review highlights the significant contributions of NPs to modern medicine and drug delivery systems. This study also attempted to glimpse the future impact of NT in medicine and pharmaceuticals.

3.
Int J Nanomedicine ; 17: 125-136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35058692

RESUMO

INTRODUCTION: Carbon nanotubes (CNTs) have been widely employed as biomolecule carriers, but there is a need for further functionalization to broaden their therapeutic application in aqueous environments. A few reports have unraveled biomolecule-CNT interactions as a measure of response of the nanocarrier to drug-encapsulation dynamics. METHODS: Herein, the dynamics of encapsulation of the antimicrobial peptide HA-FD-13 (accession code 2L24) into CNTs and hydroxylated CNTs (HCNTs) is discussed. RESULTS: The van der Waals (vdW) interaction energy of CNT-peptide and HCNT-peptide complexes decreased, reaching -110.6 and -176.8 kcal.Mol-1, respectively, once encapsulation of the peptide inside the CNTs had been completed within 15 ns. The free energy of the two systems decreased to -43.91 and -69.2 kcal.Mol-1 in the same order. DISCUSSION: The peptide was encased in the HCNTs comparatively more rapidly, due to the presence of both electrostatic and vdW interactions between the peptide and HCNTs. However, the peptide remained encapsulated throughout the vdW interaction in both systems. The negative values of the free energy of the two systems showed that the encapsulation process had occurred spontaneously. Of note, the lower free energy in the HCNT system suggested more stable peptide encapsulation.


Assuntos
Nanotubos de Carbono , Peptídeos Antimicrobianos , Hidroxilação , Simulação de Dinâmica Molecular , Peptídeos
4.
Sci Rep ; 11(1): 18753, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548596

RESUMO

The use of carbon nanotubes as anticancer drug delivery cargo systems is a promising modality as they are able to perforate cellular membranes and transport the carried therapeutic molecules into the cellular components. Our work describes the encapsulation process of a common anticancer drug, Isatin (1H-indole-2,3-dione) as a guest molecule, in a capped single-walled carbon nanotube (SWCNT) host with chirality of (10,10). The encapsulation process was modelled, considering an aqueous solution, by a molecular dynamics (MD) simulation under a canonical NVT ensemble. The interactions between the atoms of Isatin were obtained from the DREIDING force filed. The storage capacity of the capped SWCNT host was evaluated to quantify its capacity to host multiple Isatin molecules. Our results show that the Isatin can be readily trapped inside the volume cavity of the capped SWCNT and it remained stable, as featured by a reduction in the van der Waals forces between Isatin guest and the SWCNT host (at approximately - 30 kcal mol-1) at the end of the MD simulation (15 ns). Moreover, the free energy of encapsulation was found to be - 34 kcal mol-1 suggesting that the Isatin insertion procedure into the SWCNT occurred spontaneously. As calculated, a capped SWCNT (10,10) with a length of 30 Å, was able to host eleven (11) molecules of Isatin, that all remained steadily encapsulated inside the SWCNT volume cavity, showing a potential for the use of carbon nanotubes as drug delivery cargo systems.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos , Isatina/administração & dosagem , Nanotubos de Carbono/química , Isatina/química , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA