Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diseases ; 11(2)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37218883

RESUMO

Obesity is a condition caused by surplus adipose tissue and is a risk factor for several diet-related diseases. Obesity is a global epidemic that has also been challenging to treat effectively. However, one promoted therapy to safely treat obesity is anti-adipogenic therapeutics. Therefore, identifying potent anti-adipogenic bioactive compounds that can safely be used clinically may effectively treat obesity in humans. Mango leaf has potential medicinal properties due to its many bioactive compounds that may enhance human health. Mangiferin (MGF) is a primary constituent in mango plants, with many health-promoting qualities. Therefore, this study investigated the effect of MGF, and tea brewed with mango leaves in cultured adipocytes. The anti-adipogenic efficacy of mango leaf tea (MLT) and MGF in 3T3-L1 cells were assessed, along with cell viability, triglyceride levels, adiponectin secretion, and glucose uptake analyzed. In addition, changes in the mRNA expression of genes involved in lipid metabolism within 3T3-L1 cells were determined using quantitative real-time PCR. Our results showed while both MLT and MGF increased glucose uptake in adipocytes, only MLT appeared to inhibit adipogenesis, as determined by decreased triglyceride accumulation. We also observed increased secretory adiponectin levels, reduced ACC mRNA expression, and increased FOXO1 and ATGL gene expression in 3T3-L1 cells treated with MLT but not MGF. Together, these results suggest that MLT may exhibit anti-adipogenic properties independent of MGF content.

2.
Sci Rep ; 12(1): 8971, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624221

RESUMO

Polyploid Giant Cancer Cells (PGCC) are increasingly being recognized as drivers of cancer recurrence. Therapy stress promotes the formation of these cells, which upon stress cessation often successfully generate more aggressive progeny that repopulate the tumor. Therefore, identification of potential PGCC vulnerabilities is key to preventing therapy failure. We have previously demonstrated that PGCC progeny formation depends on the lysosomal enzyme acid ceramidase (ASAH1). In this study, we compared transcriptomes of parental cancer cells and PGCC in the absence or presence of the ASAH1 inhibitor LCL521. Results show that PGCC express less INSIG1, which downregulates cholesterol metabolism and that inhibition of ASAH1 increased HMGCR which is the rate limiting enzyme in cholesterol synthesis. Confocal microscopy revealed that ceramide and cholesterol do not colocalize. Treatment with LCL521 or simvastatin to inhibit ASAH1 or HMGCR, respectively, resulted in accumulation of ceramide at the cell surface of PGCC and prevented PGCC progeny formation. Our results suggest that similarly to inhibition of ASAH1, disruption of cholesterol signaling is a potential strategy to interfere with PGCC progeny formation.


Assuntos
Neoplasias , Ciclo Celular , Ceramidas , Colesterol , Humanos , Poliploidia
3.
Lipids ; 56(4): 413-422, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33881166

RESUMO

Cholesterol metabolism is paramount to cells. Aberrations to cholesterol metabolism affects cholesterol homeostasis, which may impact the risk of several diseases. Recent evidence has suggested that vascular smooth muscle cell (VSMC) cholesterol metabolism may play a role in atherosclerosis. However, there is scant in vitro mechanistic data involving primary VSMC that directly tests how VSMC cholesterol metabolism may impact atherosclerosis. One reason for this lack of data is due to the impracticality of gene manipulation studies in primary VSMC, as cultured primary VSMC become senescent and lose their morphology rapidly. However, there are no immortalized VSMC lines known to be suitable for studying VSMC cholesterol metabolism. The purpose of this study was to determine whether MOVAS cells, a commercially available VSMC line, are suitable to use for studying VSMC cholesterol metabolism. Using immunoblotting and immunofluorescence, we showed that MOVAS cells express ABCA1, ABCG1, and SREBP-2. We also determined that MOVAS cells efflux cholesterol to apoAI and HDL, which indicates functionality of ABCA1/ABCG1. In serum-starved MOVAS cells, SREBP-2 target gene expression was increased, confirming SREBP-2 functionality. We detected miR-33a expression in MOVAS cells and determined this microRNA can silence ABCA1 and ABCG1 via identifying conserved miR-33a binding sites within ABCA1/ABCG1 3'UTR in MOVAS cells. We showed that cholesterol-loading MOVAS cells results in this cell line to transdifferentiate into a macrophage-like cell, which also occurs when VSMC accumulate cholesterol. Our characterization of MOVAS cells sufficiently demonstrates that they are suitable to use for studying VSMC cholesterol metabolism in the context of atherosclerosis.


Assuntos
Colesterol/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiologia , Regiões 3' não Traduzidas , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Aorta/citologia , Apolipoproteína A-I/metabolismo , Linhagem Celular , Transdiferenciação Celular , Expressão Gênica , Macrófagos/citologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA