Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 38(48): 7366, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31576014

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Oncogene ; 38(48): 7311-7328, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31420605

RESUMO

Mutational activation of the epidermal growth factor receptor (EGFR) is a major player in the pathogenesis of non-small cell lung cancer (NSCLC). NSCLC patients with constitutively active EGFR mutations eventually develop drug resistance against EGFR tyrosine-kinase inhibitors; therefore, better understandings of key components of mutant EGFR (mtEGFR) signaling are required. Here, we initially observed aberrantly high expression of protein kinase Cα (PKCα) in lung adenocarcinomas, especially those with EGFR mutations, and proceeded to examine the role of PKCα in the regulation of the signaling pathways downstream of mtEGFR. The results showed that NSCLC cell lines with constitutively active EGFR mutations tend to have very or moderately high PKCα levels. Furthermore, PKCα was constitutively activated in HCC827 and H4006 cells which have an EGFR deletion mutation in exon 19. Interestingly, mtEGFR was not required for the induction of PKCα at protein and message levels suggesting that the increased levels of PKCα are due to independent selection. On the other hand, mtEGFR activity was required for robust activation of PKCα. Loss of functions studies revealed that the NSCLC cells rely heavily on PKCα for the activation of the mTORC1 signaling pathway. Unexpectedly, the results demonstrated that PKCα was required for activation of Akt upstream of mTOR but only in cells with the mtEGFR and with the increased expression of PKCα. Functionally, inhibition of PKCα in HCC827 led to caspase-3-dependent apoptosis and a significant decrease in cell survival in response to cellular stress induced by serum starvation. In summary, the results identified important roles of PKCα in regulating mTORC1 activity in lung cancer cells, whereby a primary switching occurs from PKCα-independent to PKCα-dependent signaling in the presence of EGFR mutations. The results present PKCα as a potential synergistic target of personalized treatment for NSCLC with constitutively active mutant forms of EGFR and constitutively active PKCα.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação Neoplásica da Expressão Gênica , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mutação , Proteína Quinase C-alfa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteína Quinase C-alfa/genética , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas
3.
FASEB J ; 32(5): 2339-2353, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29259036

RESUMO

Bioactive sphingolipids are modulators of immune processes and their metabolism is often dysregulated in ulcerative colitis, a major category of inflammatory bowel disease (IBD). While multiple axes of sphingolipid metabolism have been investigated to delineate mechanisms regulating ulcerative colitis, the role of acid ceramidase (AC) in intestinal inflammation is yet to be characterized. Here we demonstrate that AC expression is elevated selectively in the inflammatory infiltrate in human and murine colitis. To probe for mechanistic insight into how AC up-regulation can impact intestinal inflammation, we investigated the selective loss of AC expression in the myeloid population. Using a model of intestinal epithelial injury, we demonstrate that myeloid AC conditional knockout mice exhibit impairment of neutrophil recruitment to the colon mucosa as a result of defective cytokine and chemokine production. Furthermore, the loss of myeloid AC protects from tumor incidence in colitis-associated cancer (CAC) and inhibits the expansion of neutrophils and granulocytic myeloid-derived suppressor cells in the tumor microenvironment. Collectively, our results demonstrate a tissue-specific role for AC in regulating neutrophilic inflammation and cytokine production. We demonstrate novel mechanisms of how granulocytes are recruited to the colon that may have therapeutic potential in intestinal inflammation, IBD, and CAC.-Espaillat, M. P., Snider, A. J., Qiu, Z., Channer, B., Coant, N., Schuchman, E. H., Kew, R. R., Sheridan, B. S., Hannun, Y. A., Obeid, L. M. Loss of acid ceramidase in myeloid cells suppresses intestinal neutrophil recruitment.


Assuntos
Ceramidase Ácida/biossíntese , Colite Ulcerativa/enzimologia , Colo/enzimologia , Regulação Enzimológica da Expressão Gênica , Mucosa Intestinal/enzimologia , Neutrófilos/enzimologia , Regulação para Cima , Ceramidase Ácida/genética , Animais , Quimiocinas/biossíntese , Quimiocinas/genética , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Colo/patologia , Neoplasias do Colo/enzimologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Feminino , Humanos , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Knockout , Células Supressoras Mieloides/enzimologia , Células Supressoras Mieloides/patologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neutrófilos/patologia , Microambiente Tumoral/genética
4.
Immunol Res ; 63(1-3): 131-43, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26395023

RESUMO

An evolving premise is that cytoprotective autophagy responses are essential to monocyte-macrophage differentiation. Whether autophagy functions similarly during the monocyte-to-dendritic cell (DC) transition is unclear. IL-10, which induces apoptosis in maturing human DCs, has been shown to inhibit starvation-induced autophagy in murine macrophage cell lines. Based on the strict requirement that Bcl-2-mediated anti-apoptotic processes are implemented during the monocyte-to-DC transition, we hypothesized that cytoprotective autophagy responses also operate at the monocyte-DC interface and that IL-10 inhibits both anti-apoptotic and cytoprotective autophagy responses at this critical juncture. In support of our premise, we show that levels of anti-apoptotic Bcl-2 and autophagy-associated LC3 and Beclin-1 proteins are coincidentally upregulated during the monocyte-to-DC transition. Autophagy was substantiated by increased autophagosome visualization after bafilomycin treatment. Moreover, the autophagy inhibitor 3-MA restricted DC differentiation by prompting apoptosis. IL-10 implemented apoptosis that was coincidentally associated with reduced levels of Bcl-2 and widespread disruption of the autophagic flux. During peak apoptosis, IL-10 produced the death of newly committed DCs. However, cells surviving the IL-10 apoptotic schedule were highly phagocytic macrophage-like cells displaying reduced capacity to stimulate allogeneic naïve T cells in a mixed leukocyte reaction, increased levels of LC3, and mature autophagosomes. Thus, IL-10's negative control of DC-driven adaptive immunity at the monocyte-DC interface includes disruption of coordinately regulated molecular networks involved in pro-survival autophagy and anti-apoptotic responses.


Assuntos
Células Dendríticas/imunologia , Interleucina-10/metabolismo , Monócitos/imunologia , Fagossomos/metabolismo , Linfócitos T/imunologia , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Proteína Beclina-1 , Comunicação Celular , Diferenciação Celular , Células Cultivadas , Citoproteção , Regulação da Expressão Gênica , Humanos , Interleucina-10/imunologia , Ativação Linfocitária , Teste de Cultura Mista de Linfócitos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA