Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 435(16): 168153, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37210029

RESUMO

Viral factories of liquid-like nature serve as sites for transcription and replication in most viruses. The respiratory syncytial virus factories include replication proteins, brought together by the phosphoprotein (P) RNA polymerase cofactor, present across non-segmented negative stranded RNA viruses. Homotypic liquid-liquid phase separation of RSV-P is governed by an α-helical molten globule domain, and strongly self-downmodulated by adjacent sequences. Condensation of P with the nucleoprotein N is stoichiometrically tuned, defining aggregate-droplet and droplet-dissolution boundaries. Time course analysis show small N-P nuclei gradually coalescing into large granules in transfected cells. This behavior is recapitulated in infection, with small puncta evolving to large viral factories, strongly suggesting that P-N nucleation-condensation sequentially drives viral factories. Thus, the tendency of P to undergo phase separation is moderate and latent in the full-length protein but unleashed in the presence of N or when neighboring disordered sequences are deleted. This, together with its capacity to rescue nucleoprotein-RNA aggregates suggests a role as a "solvent-protein".


Assuntos
Nucleoproteínas , Vírus Sincicial Respiratório Humano , Compartimentos de Replicação Viral , Proteínas Estruturais Virais , RNA Polimerases Dirigidas por DNA/metabolismo , Nucleoproteínas/metabolismo , Vírus Sincicial Respiratório Humano/metabolismo , Vírus Sincicial Respiratório Humano/fisiologia , Compartimentos de Replicação Viral/metabolismo , Replicação Viral , Proteínas Estruturais Virais/metabolismo , Humanos
2.
J Biol Chem ; 297(3): 101039, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34343569

RESUMO

Hereditary transthyretin amyloidosis (ATTR) is an autosomal dominant disease characterized by the extracellular deposition of the transport protein transthyretin (TTR) as amyloid fibrils. Despite the progress achieved in recent years, understanding why different TTR residue substitutions lead to different clinical manifestations remains elusive. Here, we studied the molecular basis of disease-causing missense mutations affecting residues R34 and K35. R34G and K35T variants cause vitreous amyloidosis, whereas R34T and K35N mutations result in amyloid polyneuropathy and restrictive cardiomyopathy. All variants are more sensitive to pH-induced dissociation and amyloid formation than the wild-type (WT)-TTR counterpart, specifically in the variants deposited in the eyes amyloid formation occurs close to physiological pHs. Chemical denaturation experiments indicate that all the mutants are less stable than WT-TTR, with the vitreous amyloidosis variants, R34G and K35T, being highly destabilized. Sequence-induced stabilization of the dimer-dimer interface with T119M rendered tetramers containing R34G or K35T mutations resistant to pH-induced aggregation. Because R34 and K35 are among the residues more distant to the TTR interface, their impact in this region is therefore theorized to occur at long range. The crystal structures of double mutants, R34G/T119M and K35T/T119M, together with molecular dynamics simulations indicate that their strong destabilizing effect is initiated locally at the BC loop, increasing its flexibility in a mutation-dependent manner. Overall, the present findings help us to understand the sequence-dynamic-structural mechanistic details of TTR amyloid aggregation triggered by R34 and K35 variants and to link the degree of mutation-induced conformational flexibility to protein aggregation propensity.


Assuntos
Neuropatias Amiloides Familiares/genética , Mutação de Sentido Incorreto , Pré-Albumina/química , Pré-Albumina/genética , Neuropatias Amiloides Familiares/metabolismo , Humanos , Cinética , Simulação de Dinâmica Molecular , Pré-Albumina/metabolismo , Agregados Proteicos , Conformação Proteica em alfa-Hélice , Estabilidade Proteica , Termodinâmica
3.
FEBS J ; 288(1): 310-324, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32324953

RESUMO

Hereditary transthyretin amyloidosis (ATTR) is a disease characterized by the extracellular deposition of transthyretin (TTR) amyloid fibrils. Highly destabilizing TTR mutations cause leptomeningeal amyloidosis, a rare, but fatal, disorder in which TTR aggregates in the brain. The disease remains intractable, since liver transplantation, the reference therapy for systemic ATTR, does not stop mutant TTR production in the brain. In addition, despite current pharmacological strategies have shown to be effective against in vivo TTR aggregation by stabilizing the tetramer native structure and precluding its dissociation, they display low brain permeability. Recently, we have repurposed tolcapone as a molecule to treat systemic ATTR. Crystal structures and biophysical analysis converge to demonstrate that tolcapone binds with high affinity and specificity to three unstable leptomeningeal TTR variants, stabilizing them and, consequently, inhibiting their aggregation. Because tolcapone is an FDA-approved drug that crosses the blood-brain barrier, our results suggest that it can translate into a first disease-modifying therapy for leptomeningeal amyloidosis. DATABASES: PDB codes for A25T-TTR, V30G-TTR, and Y114C-TTR bound to tolcapone are 6TXV, 6TXW, and 6XTK, respectively.


Assuntos
Amiloide/antagonistas & inibidores , Antiparkinsonianos/química , Fármacos Neuroprotetores/química , Pré-Albumina/química , Agregados Proteicos/efeitos dos fármacos , Tolcapona/química , Amiloide/química , Neuropatias Amiloides Familiares/tratamento farmacológico , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/metabolismo , Neuropatias Amiloides Familiares/patologia , Antiparkinsonianos/farmacologia , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Reposicionamento de Medicamentos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutação , Fármacos Neuroprotetores/farmacologia , Pré-Albumina/genética , Pré-Albumina/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Desnaturação Proteica , Dobramento de Proteína/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tolcapona/farmacologia , Ureia/química
4.
ACS Omega ; 3(11): 14732-14745, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30555987

RESUMO

Among Mononegavirales, the Pneumovirus family stands out by its RNA polymerase processivity that relies on a transcription antiterminator, the M2-1 protein, which also plays a key role in viral particle assembly. Biophysical and structural evidence shows that this RNA-binding tetramer is strongly modulated by a CCCH Zn2+ binding motif. We show that while the global dissociation/unfolding free energy is 10 kcal mol-1, more stable for the respiratory syncytial virus M2-1, the human metapneumovirus (HMPV) counterpart shows a 7 kcal mol-1 higher intersubunit affinity. Removal of Zn2+ from both homologues leads to an apo-monomer of identical secondary structure that further undergoes a slow irreversible oligomerization. Mutation of the histidine residue of the Zn2+ motif to cysteine or alanine leads directly to large oligomers, strongly suggesting that metal coordination has an exquisite precision for modulating the quaternary arrangement. Zn2+ removal is very slow and requires subdenaturing concentrations of guanidine chloride, suggesting a likely local folding energy barrier. Exploring a broad combination of denaturant and ethylenediaminetetraacetic acid conditions, we showed that the metapneumovirus protein has to overcome a higher energy barrier to trigger Zn2+ removal-driven dissociation, in concordance with a slower dissociation kinetics. In silico modeling of open and close conformations for both M2-1 tetramers together with interaction energy calculations reveals that the gradual opening of protomers decreases the number of intersubunit contacts. Half of the interaction energy holding each protomer in the tetramer comes from the CCCH motif, while HMPV-M2-1 harbors additional contacts between the CCCH motif of one subunit and the core domain of a protomer located in trans, allowing the rationalization of the experimental data obtained. Overall, the evidence points at a key role of the CCCH motif in switching between structural and consequently functional alternatives of the M2-1 protein.

5.
Sci Rep ; 7: 44709, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338000

RESUMO

More than a hundred different Transthyretin (TTR) mutations are associated with fatal systemic amyloidoses. They destabilize the protein tetrameric structure and promote the extracellular deposition of TTR as pathological amyloid fibrils. So far, only mutations R104H and T119M have been shown to stabilize significantly TTR, acting as disease suppressors. We describe a novel A108V non-pathogenic mutation found in a Portuguese subject. This variant is more stable than wild type TTR both in vitro and in human plasma, a feature that prevents its aggregation. The crystal structure of A108V reveals that this stabilization comes from novel intra and inter subunit contacts involving the thyroxine (T4) binding site. Exploiting this observation, we engineered a A108I mutation that fills the T4 binding cavity, as evidenced in the crystal structure. This synthetic protein becomes one of the most stable TTR variants described so far, with potential application in gene and protein replacement therapies.


Assuntos
Alanina/química , Isoleucina/química , Pré-Albumina/química , Valina/química , Idoso , Alanina/metabolismo , Substituição de Aminoácidos , Amiloidose/genética , Amiloidose/metabolismo , Doenças Assintomáticas , Sítios de Ligação , Cristalografia por Raios X , Feminino , Expressão Gênica , Humanos , Isoleucina/metabolismo , Modelos Moleculares , Pré-Albumina/genética , Pré-Albumina/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Valina/metabolismo
6.
Nat Commun ; 7: 10787, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26902880

RESUMO

Transthyretin (TTR) is a plasma homotetrameric protein implicated in fatal systemic amyloidoses. TTR tetramer dissociation precedes pathological TTR aggregation. Native state stabilizers are promising drugs to treat TTR amyloidoses. Here we repurpose tolcapone, an FDA-approved molecule for Parkinson's disease, as a potent TTR aggregation inhibitor. Tolcapone binds specifically to TTR in human plasma, stabilizes the native tetramer in vivo in mice and humans and inhibits TTR cytotoxicity. Crystal structures of tolcapone bound to wild-type TTR and to the V122I cardiomyopathy-associated variant show that it docks better into the TTR T4 pocket than tafamidis, so far the only drug on the market to treat TTR amyloidoses. These data indicate that tolcapone, already in clinical trials for familial amyloid polyneuropathy, is a strong candidate for therapeutic intervention in these diseases, including those affecting the central nervous system, for which no small-molecule therapy exists.


Assuntos
Neuropatias Amiloides Familiares/tratamento farmacológico , Benzofenonas/uso terapêutico , Inibidores de Catecol O-Metiltransferase/uso terapêutico , Nitrofenóis/uso terapêutico , Pré-Albumina/metabolismo , Agregação Patológica de Proteínas/tratamento farmacológico , Administração Oral , Animais , Benzofenonas/farmacologia , Inibidores de Catecol O-Metiltransferase/farmacologia , Linhagem Celular , Dimerização , Reposicionamento de Medicamentos , Voluntários Saudáveis , Humanos , Camundongos Transgênicos , Pessoa de Meia-Idade , Nitrofenóis/farmacologia , Pré-Albumina/efeitos dos fármacos , Tolcapona
7.
Biochemistry ; 52(39): 6779-89, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23984912

RESUMO

Human respiratory syncytial virus (hRSV) is a worldwide distributed pathogen that causes respiratory disease mostly in infants and the elderly. The M2-1 protein of hRSV functions as a transcription antiterminator and partakes in virus particle budding. It is present only in Pneumovirinae, namely, Pneumovirus (RSV) and Metapneumovirus, making it an interesting target for specific antivirals. hRSV M2-1 is a tight tetramer bearing a Cys3-His1 zinc-binding motif, present in Ebola VP30 protein and some eukaryotic proteins, whose integrity was shown to be essential for protein function but without a biochemical mechanistic basis. We showed that removal of the zinc atom causes dissociation to a monomeric apo-M2-1 species. Surprisingly, the secondary structure and stability of the apo-monomer is indistinguishable from that of the M2-1 tetramer. Dissociation reported by a highly sensitive tryptophan residue is much increased at pH 5.0 compared to pH 7.0, suggesting a histidine protonation cooperating in zinc removal. The monomeric apo form binds RNA at least as well as the tetramer, and this interaction is outcompeted by the phosphoprotein P, the RNA polymerase cofactor. The role of zinc goes beyond stabilization of local structure, finely tuning dissociation to a fully folded and binding competent monomer. Removal of zinc is equivalent to the disruption of the motif by mutation, only that the former is potentially reversible in the cellular context. Thus, this process could be triggered by a natural chelator such as glutathione or thioneins, where reversibility strongly suggests a modulatory role in the participation of M2-1 in the assembly of the polymerase complex or in virion budding.


Assuntos
Cisteína/química , Histidina/química , Vírus Sincicial Respiratório Humano/química , Proteínas Virais/química , Zinco/metabolismo , Motivos de Aminoácidos , Cisteína/metabolismo , Histidina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Estrutura Quaternária de Proteína , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/metabolismo , Proteínas Virais/metabolismo , Zinco/química , Zinco/deficiência
8.
Biochemistry ; 51(41): 8100-10, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22978633

RESUMO

Paramyxoviruses share the essential RNA polymerase complex components, namely, the polymerase (L), phosphoprotein (P), and nucleoprotein (N). Human respiratory syncytial virus (RSV) P is the smallest polypeptide among the family, sharing a coiled coil tetramerization domain, which disruption renders the virus inactive. We show that unfolding of P displays a first transition with low cooperativity but substantial loss of α-helix content and accessibility to hydrophobic sites, indicative of loose chain packing and fluctuating tertiary structure, typical of molten globules. The lack of unfolding baseline indicates a native state in conformational exchange and metastable at 20 °C. The second transition starts from a true intermediate state, with only the tetramerization domain remaining folded. The tetramerization domain undergoes a two-state dissociation/unfolding reaction (37.3 kcal mol(-1)). The M(2-1) transcription antiterminator, unique to RSV and Metapneumovirus, forms a nonglobular P:M(2-1) complex with a 1:1 stoichiometry and a K(D) of 8.1 nM determined by fluorescence anisotropy, far from the strikingly coincident dissociation range of P and M(2-1) tetramers (10(-28) M(3)). The M(2-1) binding region has been previously mapped to the N-terminal module of P, strongly suggesting the latter as the metastable molten globule domain. Folding, oligomerization, and assembly events between proteins and with RNA are coupled in the RNA polymerase complex. Quantitative assessment of the hierarchy of these interactions and their mechanisms contribute to the general understanding of RNA replication and transcription in Paramyxoviruses. In particular, the unique P-M(2-1) interface present in RSV provides a valuable antiviral target for this worldwide spread human pathogen.


Assuntos
Biopolímeros/metabolismo , Fosfoproteínas/metabolismo , Desnaturação Proteica , Vírus Sincicial Respiratório Humano/metabolismo , Biopolímeros/química , Cromatografia em Gel , Dicroísmo Circular , Fosfoproteínas/química , Conformação Proteica , Dobramento de Proteína , Espectrometria de Fluorescência
9.
Clin Endocrinol (Oxf) ; 67(3): 351-7, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17532758

RESUMO

CONTEXT: Thyroid dyshormonogenesis is associated with mutations in the thyroglobulin (TG) gene and characterized by normal organification of iodide and low serum TG. These mutations give rise to congenital goitrous hypothyroidism, transmitted in an autosomal recessive mode. OBJECTIVES: The aim of this study was to identify new mutations in the TG gene in an attempt to increase the understanding of the molecular basis of this disorder. Three unrelated patients with marked impairment of TG synthesis were studied. METHODS: The promoter and the complete coding regions of the TG gene, along with the flanking intronic regions, were analysed by direct DNA sequencing. RESULTS: Four different inactivating TG mutations, three novel mutations (c.548G>A, p.C164Y; c.759-760insA, p.L234fsX237; c.6701C>A, p.A2215D) and one previously identified mutation (c.886C>T, p.R277X) were identified. Multiple sequence alignment study revealed that the wild-type cysteine residue at position 164 is strictly conserved in the TG of all the species analysed, whereas the wild-type alanine residue at position 2215 is well conserved in the TG and acetylcholinesterase (AChE) of all the species analysed except in rabbit AChE, in which it is substituted by glutamic acid. CONCLUSIONS: We report three patients with congenital hypothyroidism with goitre caused by two compound heterozygous mutations, p.C164Y/p.L234fsX237 and p.R277X/p.A2215D, and one homozygous mutation, p.R277X, in the TG gene. To our knowledge this is the first report of the presence of a nucleotide insertion mutation in the TG gene.


Assuntos
Hipotireoidismo Congênito/genética , Bócio/genética , Mutação Puntual , Tireoglobulina/genética , Pré-Escolar , Análise Mutacional de DNA , Feminino , Haplótipos , Humanos , Recém-Nascido , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único , Polimorfismo Conformacional de Fita Simples , Estrutura Secundária de Proteína , Tireoglobulina/sangue , Tireoglobulina/química
10.
Medicina (B Aires) ; 65(3): 257-67, 2005.
Artigo em Espanhol | MEDLINE | ID: mdl-16042141

RESUMO

Thyroid diseases constitute a heterogeneous collection of abnormalities associated with mutations in genes responsible for the development of thyroid: thyroid transcription factor-1 (TTF-1), thyroid transcriptions factor-2 (TTF-2) and PAX8, or in one of the genes coding for the proteins involved in thyroid hormone biosynthesis such as thyroglobulin (TG), thyroperoxidase (TPO), hydrogen peroxide-generating system (DUOX2), sodium/iodide symporter (NIS), pendrin (PDS), TSH and TSH receptor (TSHr). Congenital hypothyroidism occurs with a prevalence of 1 in 4000 newborns. Patients with this syndrome can be divided into two groups: nongoitrous (dysem/bryogenesis) or goitrous (dyshormonogenesis) congenital hypothyroidism. The dysembryogenesis group, which accounts for 85% of the cases, results from ectopy, agenesis and hypoplasia. In a minority of these patients, the congenital hypothyroidism is associated with mutations in TTF-1, TTF-2, PAX-8, TSH or TSHr genes. The presence of congenital goiter (15% of the cases) has been linked to mutations in the NIS, TG, TPO, DUOX2 or PDS genes. The congenital hypothyroidism with dyshormonogenesis is transmitted as an autosomal recessive trait. Somatic mutations of the TSHr have been identified in hyperfunctioning thyroid adenomas. Another established thyroid disease is the resistance to thyroid hormone (RTH). It is a syndrome of reduced tissue responsiveness to hormonal action caused by mutations located in the thyroid hormone receptor beta (TRbeta) gene. Mutant TRbetas interfere with the function of the wild-type receptor by a dominant negative mechanism. In conclusion, the identification of mutations in the thyroid expression genes has provided important insights into structure-function relationships. The thyroid constitutes an excellent model for the molecular study of genetic diseases.


Assuntos
Hipotireoidismo Congênito/genética , Bócio/genética , Hipertireoidismo/genética , Hipotireoidismo Congênito/metabolismo , Bócio/metabolismo , Humanos , Hipertireoidismo/metabolismo , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Mutação , Receptores da Tireotropina/genética , Hormônios Tireóideos/biossíntese , Hormônios Tireóideos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA