Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 65: 102818, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37463530

RESUMO

The NADPH oxidase NOX4 has been proposed as necessary for the apoptosis induced by the Transforming Growth Factor-beta (TGF-ß) in hepatocytes and hepatocellular carcinoma (HCC) cells. However, whether NOX4 is required for TGF-ß-induced canonical (SMADs) or non-canonical signals is not fully understood yet, neither its potential involvement in other parallel actions induced by TGF-ß. In this work we have used CRISPR Cas9 technology to stable attenuate NOX4 expression in HCC cells. Results have indicated that NOX4 is required for an efficient SMAD2/3 phosphorylation in response to TGF-ß, whereas non-canonical signals, such as the phosphorylation of the Epidermal Growth Receptor or AKT, are higher in NOX4 silenced cells. TGF-ß-mediated inhibition of cell proliferation and viability is attenuated in NOX4 silenced cells, correlating with decreased response in terms of apoptosis, and maintenance of high expression of MYC and CYCLIN D1. These results would indicate that NOX4 is required for all the tumor suppressor actions of TGF-ß in HCC. However, analysis in human HCC tumors has revealed a worse prognosis for patients showing high expression of TGF-ß1-related genes concomitant with high expression of NOX4. Deepening into other tumorigenic actions of TGF-ß that may contribute to tumor progression, we found that NOX4 is also required for TGF-ß-induced migratory effects. The Epithelial-Mesenchymal transition (EMT) program does not appear to be affected by attenuation of NOX4 levels. However, TGF-ß-mediated regulation of cytoskeleton dynamics and focal adhesions require NOX4, which is necessary for TGF-ß-induced increase in the chaperone Hsp27 and correct subcellular localization of Hic-5 within focal adhesions, as well for upregulation of the metalloprotease MMP9. All these results together point to NOX4 as a key element in the whole TGF-ß signaling in HCC cells, revealing an unknown role for NOX4 as tumor promoter in HCC patients presenting activation of the TGF-ß pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Fator de Crescimento Transformador beta , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Fator de Crescimento Transformador beta1
2.
Hepatology ; 78(2): 416-433, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35920301

RESUMO

BACKGROUND AND AIMS: The NADPH oxidase NOX4 plays a tumor-suppressor function in HCC. Silencing NOX4 confers higher proliferative and migratory capacity to HCC cells and increases their in vivo tumorigenic potential in xenografts in mice. NOX4 gene deletions are frequent in HCC, correlating with higher tumor grade and worse recurrence-free and overall survival rates. However, despite the accumulating evidence of a protective regulatory role in HCC, the cellular processes governed by NOX4 are not yet understood. Accordingly, the aim of this work was to better understand the molecular mechanisms regulated by NOX4 in HCC in order to explain its tumor-suppressor action. APPROACH AND RESULTS: Experimental models: cell-based loss or gain of NOX4 function experiments, in vivo hepatocarcinogenesis induced by diethylnitrosamine in Nox4 -deficient mice, and analyses in human HCC samples. Methods include cellular and molecular biology analyses, proteomics, transcriptomics, and metabolomics, as well as histological and immunohistochemical analyses in tissues. Results identified MYC as being negatively regulated by NOX4. MYC mediated mitochondrial dynamics and a transcriptional program leading to increased oxidative metabolism, enhanced use of both glucose and fatty acids, and an overall higher energetic capacity and ATP level. NOX4 deletion induced a redox imbalance that augmented nuclear factor erythroid 2-related factor 2 (Nrf2) activity and was responsible for MYC up-regulation. CONCLUSIONS: Loss of NOX4 in HCC tumor cells induces metabolic reprogramming in a Nrf2/MYC-dependent manner to promote HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , NADPH Oxidases/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Oxirredução , Homeostase , Espécies Reativas de Oxigênio/metabolismo
3.
Cells ; 10(9)2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34571961

RESUMO

The Transforming Growth Factor-beta (TGF-ß) pathway plays essential roles in liver development and homeostasis and become a relevant factor involved in different liver pathologies, particularly fibrosis and cancer. The family of NADPH oxidases (NOXs) has emerged in recent years as targets of the TGF-ß pathway mediating many of its effects on hepatocytes, stellate cells and macrophages. This review focuses on how the axis TGF-ß/NOXs may regulate the biology of different liver cells and how this influences physiological situations, such as liver regeneration, and pathological circumstances, such as liver fibrosis and cancer. Finally, we discuss whether NOX inhibitors may be considered as potential therapeutic tools in liver diseases.


Assuntos
Fígado/metabolismo , NADPH Oxidases/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Humanos , Cirrose Hepática/metabolismo , Regeneração Hepática/fisiologia , Neoplasias/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA