Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920961

RESUMO

Natural products based on imidazole scaffolds have inspired the discovery of a wide variety of bioactive compounds. Herein, a series of imidazoles that act as competitive and potent cruzain inhibitors was investigated using a combination of ligand- and structure-based drug design strategies. Quantitative structure-activity relationships (QSARs) were generated along with the investigation of enzyme-inhibitor molecular interactions. Predictive hologram QSAR (HQSAR, r2pred = 0.80) and AutoQSAR (q2 = 0.90) models were built, and key structural properties that underpin cruzain inhibition were identified. Moreover, comparative molecular field analysis (CoMFA, r2pred = 0.81) and comparative molecular similarity indices analysis (CoMSIA, r2pred = 0.73) revealed 3D molecular features that strongly affect the activity of the inhibitors. These findings were examined along with molecular docking studies and were highly compatible with the intermolecular contacts that take place between cruzain and the inhibitors. The results gathered herein revealed the main factors that determine the activity of the imidazoles studied and provide novel knowledge for the design of improved cruzain inhibitors.


Assuntos
Cisteína Endopeptidases/química , Imidazóis/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Proteínas de Protozoários/química , Relação Quantitativa Estrutura-Atividade , Sítios de Ligação , Cisteína Endopeptidases/metabolismo , Desenho de Fármacos , Imidazóis/química , Inibidores de Proteases/farmacologia , Ligação Proteica , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo
2.
J Chem Inf Model ; 60(2): 1028-1041, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31765144

RESUMO

A virtual screening conducted with nearly 4 000 000 compounds from lead-like and fragment-like subsets enabled the identification of a small-molecule inhibitor (1) of the Trypanosoma cruzi cruzain enzyme, a validated drug target for Chagas disease. Subsequent comprehensive structure-based drug design and structure-activity relationship studies led to the discovery of carbamoyl imidazoles as potent, reversible, and competitive cruzain inhibitors. The most potent carbamoyl imidazole inhibitor (45) exhibited high affinity with a Ki value of 20 nM, presenting both in vitro and in vivo activity against T. cruzi. Furthermore, the most promising compounds reduced parasite burden in vivo and showed no toxicity at a dose of 100 mg/kg. These carbamoyl imidazoles are structurally attractive, nonpeptidic, and easy to prepare and synthetically modify. Finally, these results further advance our understanding of the noncovalent mode of inhibition of this pharmaceutically relevant enzyme, building strong foundations for drug discovery efforts.


Assuntos
Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Desenho de Fármacos , Proteínas de Protozoários/antagonistas & inibidores , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Cisteína Endopeptidases/química , Modelos Moleculares , Conformação Proteica , Proteínas de Protozoários/química , Relação Estrutura-Atividade , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA