Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 277(Pt 4): 134390, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111466

RESUMO

Members of the KCTD protein family play key roles in fundamental physio-pathological processes including cancer, neurodevelopmental/neuropsychiatric, and genetic diseases. Here, we report the crystal structure of the KCTD1 P20S mutant, which causes the scalp-ear-nipple syndrome, and molecular dynamics (MD) data on the wild-type protein. Surprisingly, the structure unravels that the N-terminal region, which precedes the BTB domain (preBTB) and bears the disease-associated mutation, adopts a folded polyproline II (PPII) state. The KCTD1 pentamer is characterized by an intricate architecture in which the different subunits mutually exchange domains to generate a closed domain swapping motif. Indeed, the BTB of each chain makes peculiar contacts with the preBTB and the C-terminal domain (CTD) of an adjacent chain. The BTB-preBTB interaction consists of a PPII-PPII recognition motif whereas the BTB-CTD contacts are mediated by an unusual (+/-) helix discontinuous association. The inspection of the protein structure, along with the data emerged from the MD simulations, provides an explanation of the pathogenicity of the P20S mutation and unravels the role of the BTB-preBTB interaction in the insurgence of the disease. Finally, the presence of potassium bound to the central cavity of the CTD pentameric assembly provides insights into the role of KCTD1 in metal homeostasis.

2.
Int J Biol Macromol ; 266(Pt 1): 131054, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522702

RESUMO

The surveillance of COVID-19 pandemic has led to the determination of millions of genome sequences of the SARS-CoV-2 virus, with the accumulation of a wealth of information never collected before for an infectious disease. Exploring the information retrieved from the GISAID database reporting at that time >13 million genome sequences, we classified the 141,639 unique missense mutations detected in the first two-and-a-half years (up to October 2022) of the pandemic. Notably, our analysis indicates that 98.2 % of all possible conservative amino acid replacements occurred. Even non-conservative mutations were highly represented (73.9 %). For a significant number of residues (3 %), all possible replacements with the other nineteen amino acids have been observed. These observations strongly indicate that, in this time interval, the virus explored all possible alternatives in terms of missense mutations for all sites of its polypeptide chain and that those that are not observed severely affect SARS-CoV-2 integrity. The implications of the present findings go well beyond the structural biology of SARS-CoV-2 as the huge amount of information here collected and classified may be valuable for the elucidation of the sequence-structure-function relationships in proteins.


Assuntos
COVID-19 , Mutação de Sentido Incorreto , SARS-CoV-2 , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Substituição de Aminoácidos , Proteínas Virais/genética , Proteínas Virais/química , Pandemias , Genoma Viral
3.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239905

RESUMO

CD59 is an abundant immuno-regulatory human protein that protects cells from damage by inhibiting the complement system. CD59 inhibits the assembly of the Membrane Attack Complex (MAC), the bactericidal pore-forming toxin of the innate immune system. In addition, several pathogenic viruses, including HIV-1, escape complement-mediated virolysis by incorporating this complement inhibitor in their own viral envelope. This makes human pathogenic viruses, such as HIV-1, not neutralised by the complement in human fluids. CD59 is also overexpressed in several cancer cells to resist the complement attack. Consistent with its importance as a therapeutical target, CD59-targeting antibodies have been proven to be successful in hindering HIV-1 growth and counteracting the effect of complement inhibition by specific cancer cells. In this work, we make use of bioinformatics and computational tools to identify CD59 interactions with blocking antibodies and to describe molecular details of the paratope-epitope interface. Based on this information, we design and produce paratope-mimicking bicyclic peptides able to target CD59. Our results set the basis for the development of antibody-mimicking small molecules targeting CD59 with potential therapeutic interest as complement activators.


Assuntos
Proteínas do Sistema Complemento , HIV-1 , Humanos , Sítios de Ligação de Anticorpos , Proteínas do Sistema Complemento/metabolismo , Antígenos CD59/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Inativadores do Complemento , HIV-1/fisiologia
4.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628409

RESUMO

Coronaviruses, including SARS-CoV-2 (the etiological agent of the current COVID-19 pandemic), rely on the surface spike glycoprotein to access the host cells, mainly through the interaction of their receptor-binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2). Therefore, molecular entities able to interfere with the binding of the SARS-CoV-2 spike protein to ACE2 have great potential to inhibit viral entry. Starting from the available structural data on the interaction between SARS-CoV-2 spike protein and the host ACE2 receptor, we engineered a set of soluble and stable spike interactors, here denoted as S-plugs. Starting from the prototype S-plug, we adopted a computational approach by combining stability prediction, associated to single-point mutations, with molecular dynamics to enhance both S-plug thermostability and binding affinity to the spike protein. The best developed molecule, S-plug3, possesses a highly stable α-helical con-formation (with melting temperature Tm of 54 °C) and can interact with the spike RBD and S1 domains with similar low nanomolar affinities. Importantly, S-plug3 exposes the spike RBD to almost the same interface as the human ACE2 receptor, aimed at the recognition of all ACE2-accessing coronaviruses. Consistently, S-plug3 preserves a low nanomolar dissociation constant with the delta B.1.617.2 variant of SARS-CoV-2 spike protein (KD = 29.2 ± 0.6 nM). Taken together, we provide valid starting data for the development of therapeutical and diagnostic tools against coronaviruses accessing through ACE2.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Enzima de Conversão de Angiotensina 2/genética , Humanos , Glicoproteínas de Membrana/metabolismo , Pandemias , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/química
5.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 11): 707-713, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31702584

RESUMO

Domain swapping is a widespread oligomerization process that is observed in a large variety of protein families. In the large superfamily of substrate-binding proteins, non-monomeric members have rarely been reported. The arginine-binding protein from Thermotoga maritima (TmArgBP), a protein endowed with a number of unusual properties, presents a domain-swapped structure in its dimeric native state in which the two polypeptide chains mutually exchange their C-terminal helices. It has previously been shown that mutations in the region connecting the last two helices of the TmArgBP structure lead to the formation of a variety of oligomeric states (monomers, dimers, trimers and larger aggregates). With the aim of defining the structural determinants of domain swapping in TmArgBP, the monomeric form of the P235GK mutant has been structurally characterized. Analysis of this arginine-bound structure indicates that it consists of a closed monomer with its C-terminal helix folded against the rest of the protein, as typically observed for substrate-binding proteins. Notably, the two terminal helices are joined by a single nonhelical residue (Gly235). Collectively, the present findings indicate that extending the hinge region and conferring it with more conformational freedom makes the formation of a closed TmArgBP monomer possible. On the other hand, the short connection between the helices may explain the tendency of the protein to also adopt alternative oligomeric states (dimers, trimers and larger aggregates). The data reported here highlight the importance of evolutionary control to avoid the uncontrolled formation of heterogeneous and potentially harmful oligomeric species through domain swapping.


Assuntos
Arginina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Thermotoga maritima/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cristalização , Mutação/genética , Ligação Proteica , Homologia Estrutural de Proteína
6.
Cancers (Basel) ; 11(10)2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31569370

RESUMO

BRCA1 and BRCA2 are the genes most frequently associated with hereditary breast and ovarian cancer (HBOC). They are crucial for the maintenance of genome stability, particularly in the homologous recombination-mediated repair pathway of DNA double-strand breaks (HR-DSBR). Widespread BRCA1/2 next-generation sequencing (NGS) screening has revealed numerous variants of uncertain significance. Assessing the clinical significance of these variants is challenging, particularly regarding the clinical management of patients. Here, we report the functional characterization of the unclassified BRCA2 c.8299C > T variant, identified in a young breast cancer patient during BRCA1/2 NGS screening. This variant causes the change of Proline 2767 to Serine in the DNA binding domain (DBD) of the BRCA2 protein, necessary for the loading of RAD51 on ssDNA during the HR-DSBR. Our in silico analysis and 3D-structure modeling predicted that the p.Pro2767Ser substitution is likely to alter the BRCA2 DBD structure and function. Therefore, to evaluate the functional impact of the p.Pro2767Ser variant, we used a minigene encoding a truncated protein that contains the BRCA2 DBD and the nearby nuclear localization sequence. We found that the ectopically expressed truncated protein carrying the normal DBD, which retains the DNA binding function and lacks the central RAD51 binding domain, interferes with endogenous wild-type BRCA2 mediator functions in the HR-DSBR. We also demonstrated that the BRCA2 Pro2767Ser DBD is unable to compete with endogenous BRCA2 DNA binding, thereby suggesting that the p.Pro2767Ser substitution in the full-length protein causes the functional loss of BRCA2. Consequently, our data suggest that the p.Pro2767Ser variant should be considered pathogenic, thus supporting a revision of the ClinVar interpretation. Moreover, our experimental strategy could be a valid method with which to preliminarily evaluate the pathogenicity of the unclassified BRCA2 germline variants in the DBD and their risk of predisposing to HBOC.

7.
Artigo em Inglês | MEDLINE | ID: mdl-29263920

RESUMO

Methylation/demethylation of cytosine plays an important role in epigenetic signaling, the reversibility of epigenetic modifications offering important opportunities for targeted therapies. Actually, methylated sites have been correlated with mutational hotspots detected in skin cancers. The present brief review discusses the physicochemical parameters underlying the specific ultraviolet-induced reactivity of methylated cytosine. It focuses on dimerization reactions giving rise to cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone adducts. According to recent studies, four conformational and electronic factors that are affected by cytosine methylation may control these reactions: the red-shift of the absorption spectrum, the lengthening of the excited state lifetime, changes in the sugar puckering modifying the stacking between reactive pyrimidines and an increase in the rigidity of duplexes favoring excitation energy transfer toward methylated pyrimidines.

8.
Acta Crystallogr D Struct Biol ; 73(Pt 7): 618-625, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28695862

RESUMO

The protein folded state is the result of the fine balance of a variety of different forces. Even minor structural perturbations may have a significant impact on the stability of these macromolecules. Studies carried out in recent decades have led to the convergent view that proteins are endowed with a flexible spine. One of the open issues related to protein local backbone geometry is the identification of the factors that influence the amplitude of the τ (N-Cα-C) angle. Here, statistical analyses performed on an updated ensemble of X-ray protein structures by dissecting the contribution of the major factors that can potentially influence the local backbone geometry of proteins are reported. The data clearly indicate that the local backbone conformation has a prominent impact on the modulation of the τ angle. Therefore, a proper assessment of the impact of the other potential factors can only be appropriately evaluated when small (ϕ, ψ) regions are considered. Here, it is shown that when the contribution of the backbone conformation is removed by considering small (ϕ, ψ) areas, an impact of secondary structure, as defined by DSSP, and/or the residue type on τ is still detectable, although to a limited extent. Indeed, distinct τ-value distributions are detected for Pro/Gly and ß-branched (Ile/Val) residues. The key role of the local backbone conformation highlighted here supports the use of variable local backbone geometry in protein refinement protocols.


Assuntos
Proteínas/química , Cristalografia por Raios X/métodos , Bases de Dados de Proteínas , Peptídeos/química , Conformação Proteica , Estrutura Secundária de Proteína
9.
J Phys Chem B ; 120(18): 4232-42, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27075054

RESUMO

C5-methylation of cytosines is strongly correlated with UV-induced mutations detected in skin cancers. Mutational hot-spots appearing at TCG sites are due to the formation of pyrimidine cyclobutane dimers (CPDs). The present study, performed for the model DNA duplex (TCGTA)3·(TACGA)3 and the constitutive single strands, examines the factors underlying the effect of C5-methylation on pyrimidine dimerization at TCG sites. This effect is quantified for the first time by quantum yields ϕ. They were determined following irradiation at 255, 267, and 282 nm and subsequent photoproduct analysis using HPLC coupled to mass spectrometry. C5-methylation leads to an increase of the CPD quantum yield up to 80% with concomitant decrease of that of pyrimidine(6-4) pyrimidone adducts (64PPs) by at least a factor of 3. The obtained ϕ values cannot be explained only by the change of the cytosine absorption spectrum upon C5-methylation. The conformational and electronic factors that may affect the dimerization reaction are discussed in light of results obtained by fluorescence spectroscopy, molecular dynamics simulations, and quantum mechanical calculations. Thus, it appears that the presence of an extra methyl on cytosine affects the sugar puckering, thereby enhancing conformations of the TC step that are prone to CPD formation but less favorable to 64PPs. In addition, C5-methylation diminishes the amplitude of conformational motions in duplexes; in the resulting stiffer structure, ππ* excitations may be transferred from initially populated exciton states to reactive pyrimidines giving rise to CPDs.


Assuntos
Citosina/química , DNA/química , Raios Ultravioleta , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Dimerização , Metilação , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Dímeros de Pirimidina/análise , Dímeros de Pirimidina/química , Teoria Quântica , Espectrometria de Fluorescência , Espectrometria de Massas em Tandem
10.
Proteins ; 83(11): 1973-86, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26264789

RESUMO

The elucidation of the mutual influence between peptide bond geometry and local conformation has important implications for protein structure refinement, validation, and prediction. To gain insights into the structural determinants and the energetic contributions associated with protein/peptide backbone plasticity, we here report an extensive analysis of the variability of the peptide bond angles by combining statistical analyses of protein structures and quantum mechanics calculations on small model peptide systems. Our analyses demonstrate that all the backbone bond angles strongly depend on the peptide conformation and unveil the existence of regular trends as function of ψ and/or φ. The excellent agreement of the quantum mechanics calculations with the statistical surveys of protein structures validates the computational scheme here employed and demonstrates that the valence geometry of protein/peptide backbone is primarily dictated by local interactions. Notably, for the first time we show that the position of the H(α) hydrogen atom, which is an important parameter in NMR structural studies, is also dependent on the local conformation. Most of the trends observed may be satisfactorily explained by invoking steric repulsive interactions; in some specific cases the valence bond variability is also influenced by hydrogen-bond like interactions. Moreover, we can provide a reliable estimate of the energies involved in the interplay between geometry and conformations.


Assuntos
Peptídeos/química , Proteínas/química , Carbono/química , Hidrogênio/química , Modelos Estatísticos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
11.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 6): 1272-83, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26057667

RESUMO

By combining quantum-mechanical analysis of small model peptides and statistical surveys of high-resolution protein structures, a systematic conformational dependence of bond lengths in polypeptide backbones has been unveiled which involves both the peptide bond (C-O and C-N) and those bonds centred on the C(α) atom. All of these bond lengths indeed display a systematic variability in the ψ angle according to both calculations and surveys of protein structures. The overall agreement between the computed and the statistical data suggests that these trends are essentially driven by local effects. The dependence of C(α) distances on ψ is governed by interactions between the σ system of the C(α) moiety and the C-O π system of the peptide bond. Maximum and minimum values for each bond distance are found for conformations with the specific bond perpendicular and parallel to the adjacent CONH peptide plane, respectively. On the other hand, the variability of the C-O and C-N distances is related to the strength of the interactions between the lone pair of the N atom and the C-O π* system, which is modulated by the ψ angle. The C-O and C-N distances are related but their trends are not strictly connected to peptide-bond planarity, although a correlation amongst all of these parameters is expected on the basis of the classical resonance model.


Assuntos
Peptídeos/química , Conformação Proteica , Teoria Quântica
12.
PLoS One ; 10(4): e0121149, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25848797

RESUMO

Cullin3 (Cul3), a key factor of protein ubiquitination, is able to interact with dozens of different proteins containing a BTB (Bric-a-brac, Tramtrack and Broad Complex) domain. We here targeted the Cul3-BTB interface by using the intriguing approach of stabilizing the α-helical conformation of Cul3-based peptides through the "stapling" with a hydrocarbon cross-linker. In particular, by combining theoretical and experimental techniques, we designed and characterized stapled Cul3-based peptides embedding the helix 2 of the protein (residues 49-68). Intriguingly, CD and NMR experiments demonstrate that these stapled peptides were able to adopt the helical structure that the fragment assumes in the parent protein. We also show that some of these peptides were able to bind to the BTB of the tetrameric KCTD11, a substrate adaptor involved in HDAC1 degradation, with high affinity (~ 300-600 nM). Cul3-derived staple peptides are also able to bind the BTB of the pentameric KCTD5. Interestingly, the affinity of these peptides is of the same order of magnitude of that reported for the interaction of full-length Cul3 with some BTB containing proteins. Moreover, present data indicate that stapling endows these peptides with an increased serum stability. Altogether, these findings indicate that the designed stapled peptides can efficiently mimic protein-protein interactions and are potentially able to modulate fundamental biological processes involving Cul3.


Assuntos
Proteínas Culina/química , Peptídeos/química , Proteínas Culina/metabolismo , Humanos , Peptídeos/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
13.
J Am Chem Soc ; 136(31): 10838-41, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25050452

RESUMO

DNA methylation, occurring at the 5 position of cytosine, is a natural process associated with mutational hotspots in skin tumors. By combining experimental techniques (optical spectroscopy, HPLC coupled to mass spectrometry) with theoretical methods (molecular dynamics, DFT/TD-DFT calculations in solution), we study trinucleotides with key sequences (TCG/T5mCG) in the UV-induced DNA damage. We show how the extra methyl, affecting the conformational equilibria and, hence, the electronic excited states, increases the quantum yield for the formation of cyclobutane dimers while reducing that of (6-4) adducts.


Assuntos
Citosina/química , Metilação de DNA , DNA/química , Simulação de Dinâmica Molecular , Teoria Quântica , Repetições de Trinucleotídeos , Raios Ultravioleta , Citosina/metabolismo , DNA/genética , Dano ao DNA , Conformação Molecular
14.
Protein Pept Lett ; 19(8): 846-51, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22185501

RESUMO

Understanding the molecular basis of neurodegenerative diseases has enormous implications for the development of effective therapeutic strategies. One of the most puzzling features of these pathologies is the occurrence of distinct strains, which are believed to be generated by alternative conformational transitions of the same protein/peptide. Very recently, it has been discovered that small model peptides are able to form alternative tightly packed assemblies (polymorphs) in the crystalline state. Intriguingly, it has been postulated that the different polymorphs of the same polypeptide sequence may be representative of distinct strains. As the organization of crystalline aggregates of small peptides may be heavily biased by crystal packing, we have here performed MD simulations on steric zipper polymorphs formed by of the IAPP-derived fragment SSTNVG. Our analyses show that these aggregates are rather stable also in a non-crystalline environment. This finding corroborates the hypothesis that steric zipper assemblies are good candidates to account for the phenomenon of strain in neurodegenerative diseases. Present investigations also provide clues on the factors that favour the formation of polymorphs. Indeed, the intrinsic stability of individual ß-sheets formed by SSTNVG strands is very poor. Therefore, the formation of these aggregates is essentially dictated by inter-sheet interactions established within the steric zipper assembly.


Assuntos
Cristalização , Peptídeos/química , Conformação Proteica , Estrutura Secundária de Proteína , Diabetes Mellitus Tipo 2/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Doenças Neurodegenerativas/metabolismo , Fenótipo
15.
PLoS One ; 6(9): e24533, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21949726

RESUMO

By combining quantum-mechanical analysis and statistical survey of peptide/protein structure databases we here report a thorough investigation of the conformational dependence of the geometry of peptide bond, the basic element of protein structures. Different peptide model systems have been studied by an integrated quantum mechanical approach, employing DFT, MP2 and CCSD(T) calculations, both in aqueous solution and in the gas phase. Also in absence of inter-residue interactions, small distortions from the planarity are more a rule than an exception, and they are mainly determined by the backbone ψ dihedral angle. These indications are fully corroborated by a statistical survey of accurate protein/peptide structures. Orbital analysis shows that orbital interactions between the σ system of C(α) substituents and the π system of the amide bond are crucial for the modulation of peptide bond distortions. Our study thus indicates that, although long-range inter-molecular interactions can obviously affect the peptide planarity, their influence is statistically averaged. Therefore, the variability of peptide bond geometry in proteins is remarkably reproduced by extremely simplified systems since local factors are the main driving force of these observed trends. The implications of the present findings for protein structure determination, validation and prediction are also discussed.


Assuntos
Peptídeos/química , Proteínas/química , Teoria Quântica , Carbono/química , Cristalografia por Raios X , Bases de Dados de Proteínas , Modelos Moleculares , Conformação Proteica
16.
Biophys J ; 99(7): 2273-8, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20923662

RESUMO

Neurotrophins (NTs) represent a family of proteins that play an important role in the survival, development, and function of neurons. Extensive efforts are currently being made to develop small molecules endowed with agonist or antagonist NT activity. The structurally versatile N-termini of these proteins are considered regions of interest for the design of new molecules. By combining experimental and computational approaches, we analyzed the intrinsic conformational preferences of the N-termini of two of the most important NTs: NGF (NGF-Nter) and NT4 (NT4-Nter). Circular dichroism spectra clearly indicate that both peptides show a preference for random coil states. Because this finding does not preclude the possibility that structured forms may occur in solution as minor conformational states, we performed molecular-dynamics simulations to gain insights into the structural features of populated species. In line with the circular dichroism analysis, the simulations show a preference for unstructured states for both peptides. However, the simulations also show that for NT4-Nter, and to a lesser extent for NGF-Nter, helical conformations, which are required for binding to the Trk receptor, are present in the repertoire of structures that are intrinsically accessible to these peptides. Accordingly, molecular recognition of NTs by the Trk receptor is accomplished by the general mechanism known as population shift. These findings provide a structural rationale for the observed activity of synthetic peptides based on these NT regions. They also suggest strategies for the development of biologically active peptide-based compounds.


Assuntos
Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Peptídeos/química , Conformação Proteica , Espectrofotometria Ultravioleta
17.
ChemMedChem ; 5(9): 1568-76, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20715282

RESUMO

Specific inhibition of the copper-containing peptidylglycine alpha-hydroxylating monooxygenase (PHM), which catalyzes the post-translational modification of peptides involved in carcinogenesis and tumor progression, constitutes a new approach for combating cancer. We carried out a structure-activity study of new compounds derived from a well-known PHM substrate analogue, the olefinic compound 4-phenyl-3-butenoic acid (PBA). We designed, synthesized, and tested various PBA derivatives both in vitro and in silico. We show that it is possible to increase PBA affinity for PHM by appropriate functionalization of its aromatic nucleus. Compound 2 d, for example, bears a meta-benzyloxy substituent, and exhibits better inhibition features (K(i)=3.9 microM, k(inact)/K(i)=427 M(-1) s(-1)) than the parent PBA (K(i)=19 microM, k(inact)/K(i)=82 M(-1) s(-1)). Docking calculations also suggest two different binding modes for PBA derivatives; these results will aid in the development of further PHM inhibitors with improved features.


Assuntos
Inibidores Enzimáticos/química , Ácidos Graxos Monoinsaturados/química , Oxigenases de Função Mista/antagonistas & inibidores , Complexos Multienzimáticos/antagonistas & inibidores , Fenilbutiratos/química , Animais , Sítios de Ligação , Domínio Catalítico , Simulação por Computador , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Ácidos Graxos Monoinsaturados/síntese química , Ácidos Graxos Monoinsaturados/farmacologia , Cinética , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos/metabolismo , Fenilbutiratos/síntese química , Fenilbutiratos/farmacologia , Relação Estrutura-Atividade , Suínos
18.
Biochem Biophys Res Commun ; 377(4): 1036-41, 2008 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18938138

RESUMO

Protein and peptide aggregation into amyloid plaques is associated with a large variety of neurodegenerative diseases. The definition of the molecular bases of these pathologies is hampered by the transient nature of pre-fibrillar small-oligomers that are considered the toxic species. The ability of the peptide GNNQQNY to form amyloid-like structures makes it a good model to investigate the complex processes involved into amyloid fiber formation. By employing full atomistic replica exchange molecular dynamics simulations, we constructed the free energy surface of small assemblies of GNNQQNY to gain novel insights into the fiber formation process. The calculations suggest that the peptide exhibits a remarkable tendency to form both parallel and antiparallel beta-sheets. The data show that GNNQQNY preference for parallel or antiparallel beta-sheets is governed by a subtle balance of factors including assemblies' size, sidechain-sidechain interactions and pH. The samplings analysis provides a rationale to the observed trends.


Assuntos
Amiloide/química , Doenças Neurodegenerativas/metabolismo , Peptídeos/química , Sequência de Aminoácidos , Humanos , Estrutura Secundária de Proteína
19.
Biophys J ; 94(10): 4031-40, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18234827

RESUMO

Nine genetically inherited neurodegenerative diseases are linked to abnormal expansions of a polyglutamine (polyQ) encoding region. Over the years, several structural models for polyQ regions have been proposed and confuted. The cross-beta-spine steric zipper motif, identified recently for the GNNQQNY peptide, represents an attractive model for amyloid fibers formed by polyQ fragments. Here we report a detailed molecular dynamics investigation of polyQ models assembled by cross-beta-spine steric zipper motifs. Our simulations indicate clearly that these assemblies are very stable. Glutamine side chains contribute strongly to the overall stability of the models by fitting perfectly within the zipper. In contrast to GNNQQNY zipper motifs, hydrogen bonding interactions provide a significant contribution to the overall stability of polyQ models. Molecular dynamics simulations carried out on monomeric polyQ forms (composed by 40-60 residues) show clearly that they can also assume structures stabilized by steric zipper motifs. Based on these findings, we build monomeric polyQ models that can explain recent data on the toxicity exerted by these species. In a more general context, our data suggests that polyQ models with interdigitated side chains can provide a structural rationale to several literature experiments on polyQ formation, stability, and toxicity.


Assuntos
Modelos Químicos , Modelos Moleculares , Peptídeos/química , Simulação por Computador , Substâncias Macromoleculares/química , Conformação Molecular , Peptídeos/toxicidade
20.
Proc Natl Acad Sci U S A ; 103(31): 11533-8, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16864786

RESUMO

The structural characterization of amyloid fibers is one of the most investigated areas in structural biology. The structural motif, denoted as steric zipper, recently discovered for the peptide GNNQQNY [Nelson, R., Sawaya, M. R., Balbirnie, M., Madsen, A. O., Riekel, C., Grothe, R. & Eisenberg, D. (2005) Nature 435, 773-778], is expected to exert strong influence in this field. To obtain further insights into the features of this unique structural motif, we report several molecular dynamics simulations of various GNNQQNY aggregates. Our analyses show that even pairs of beta-sheets composed of a limited number of beta-strands are stable in the 20-ns time interval considered, which suggests that steric zipper interactions at a beta-sheet-beta-sheet interface strongly contribute to the stability of these aggregates. Moreover, although the basic features of side chain-side chain interactions are preserved in the simulation, the backbone structure undergoes significant variations. Upon equilibration, a significant twist of the beta-strands that compose the beta-sheets is observed. These results demonstrate that the occurrence of steric zipper interactions is compatible with flat and twisted beta-sheets. Molecular dynamics simulations carried out on two pairs of beta-sheets, separated in the crystal state by a hydrated interface, lead to interesting results. The two pairs of sheets, while twisting, associate through stable peptide-peptide interactions. These findings provide insight into the mechanism that leads to the formation of higher aggregates. On these bases, it is possible to reconcile the crystallographic and the EM data on the size of the basic GNNQQNY fiber unit.


Assuntos
Amiloide/química , Simulação por Computador , Modelos Moleculares , Peptídeos/química , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Amiloide/genética , Dados de Sequência Molecular , Peptídeos/genética , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA