Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 769: 145080, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33736256

RESUMO

Eugenia uniflora L. is an important fruit tree native to tropical South America that adapts to different habitats, thanks to its metabolic diversity and ability to adjust the leaf antioxidant metabolism. We hypothesized that this metabolic diversity would also enable E. uniflora to avoid oxidative damage and tolerate the enhanced ozone (O3) concentrations that have been registered in the (sub)tropics. We investigated whether carbohydrates, polyphenols and antioxidants are altered and markers of oxidative damage (ROS accumulation, alterations in leaf gas exchange, growth and biomass production) are detected in plants exposed to two levels of O3 (ambient air and twice elevated ozone level in a O3-FACE system for 75 days). Phytotoxic O3 dose above a threshold of 0 nmol m-2 s-1 (POD0) and accumulated exposure above 40 ppb (AOT40) were 3.6 mmol m-2 and 14.898 ppb h at ambient, and 4.7 mmol m-2 and 43.881 ppb h at elevated O3. Twenty-seven primary metabolites and 16 phenolic compounds were detected in the leaves. Contrary to the proposed hypothesis that tropical broadleaf trees are relatively O3 tolerant, we concluded that E. uniflora plants are sensitive to elevated O3 concentrations. Experimental POD0 values were lower than the critical levels for visible foliar O3, because of low stomatal conductance. In spite of this low stomatal O3 uptake, we found classic O3 injury, e.g. reduction in carbohydrates and fatty acids concentrations; non-significant changes in the polyphenol profile; inefficient antioxidant responses; increased contents of ROS and indicators of lipid peroxidation; reductions in stomatal conductance, net photosynthesis, root/shoot ratio and height growth. However, we also found some compensation mechanisms, e.g. increased leaf concentration of polyols for protecting the membranes, and increased leaf number for compensating the decline of photosynthetic rate. These results help filling the knowledge gap about tropical tree responses to O3.


Assuntos
Poluentes Atmosféricos , Eugenia , Ozônio , Poluentes Atmosféricos/análise , Ozônio/análise , Fotossíntese , Folhas de Planta/química , América do Sul , Árvores
2.
Sci Total Environ ; 656: 1091-1101, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30625641

RESUMO

Passiflora edulis Sims is a liana species of high economic interest and is an interesting model plant for understanding ozone action on disturbed vegetation. In this work we hypothesized that P. edulis has adaptive responses to oxidative stress that enable it to tolerate ozone damage based on its capacity to grow under a diversity of environmental conditions and to dominate disturbed areas. We exposed seedlings to three levels of ozone in a Free-Air Controlled Exposure (FACE) system (22, 41 and 58 ppb h AOT40 and 13.52, 17.24 and 20.62 mmol m-2 POD0, over 97 days) for identifying its tolerance mechanisms. Anatomical (leaf blade structure and fluorescence emission of chloroplast metabolites), physiological (leaf gas exchange, growth rate and biomass production) and biochemical (pigments, total sugars, starch, enzymatic and non-enzymatic antioxidant metabolites, reactive oxygen species and lipid peroxidation derivatives) responses were assessed. Ozone caused decreased total number of leaves, hyperplasia and hypertrophy of the mesophyll cells, and accelerated leaf senescence. However, O3 did not affect carbohydrates content, net photosynthetic rate, or total biomass production, indicating that the carboxylation efficiency and associated physiological processes were not affected. In addition, P. edulis showed higher leaf contents of ascorbic acid, glutathione (as well high ratio between their reduced and total forms), carotenoids, and flavonoids located in the chloroplast outer envelope membrane. Our results indicate that P. edulis is an O3-tolerant species due to morphological acclimation responses and an effective antioxidant defense system represented by non-enzymatic antioxidants, which maintained the cellular redox balance under ozone.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Ozônio/efeitos adversos , Passiflora/efeitos dos fármacos , Relação Dose-Resposta a Droga , Passiflora/anatomia & histologia , Passiflora/química , Passiflora/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Plântula/anatomia & histologia , Plântula/química , Plântula/efeitos dos fármacos , Plântula/fisiologia
3.
Sci Total Environ ; 550: 861-870, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26851758

RESUMO

The antioxidant responses in saplings of Tibouchina pulchra (a native tree from the Brazilian Atlantic Rainforest) exposed around an oil refinery in the city of Cubatão (SE Brazil), varied during the exchange of its power generation source, from boilers fueled with oil to a thermoelectric fueled with natural gas. The redox potential changed in response to an interaction of air pollution and meteorological parameters, indicating that the pro-oxidant/antioxidant balance was not reached after the exchange of the power generation system. The gain in environmental quality in the region was not achieved as expected due the technological modernization, at least relative to oxidative stressors. These conclusions were based on results of analyses of enzymatic antioxidants: superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR); non-enzymatic antioxidants: reduced, oxidized and total ascorbic acid (AsA, DHA, totAA) and glutathione (GSH, GSSG, totG), their redox state (AsA/totAA and GSH/totG) and an indicator of lipid peroxidation (MDA). We also applied exploratory multivariate statistics in order to verify if the temporal sequence of changes in the plant redox capacity coincided with changes in the profile of air pollution, climatic conditions or with their interactions and if the environmental benefits that would supposedly be promoted by the mentioned exchange of power generation system were achieved in the region.


Assuntos
Poluentes Atmosféricos/toxicidade , Monitoramento Ambiental , Resíduos Industriais/análise , Estresse Oxidativo , Árvores/fisiologia , Poluentes Atmosféricos/análise , Ácido Ascórbico , Brasil , Catalase/metabolismo , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Indústria de Petróleo e Gás , Oxirredução , Floresta Úmida
4.
Environ Sci Pollut Res Int ; 21(8): 5484-95, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24407781

RESUMO

The present study aimed to establish the seasonal variations in the redox potential ranges of young Tibouchina pulchra plants growing in the Cubatão region (SE Brazil) under varying levels of oxidative stress caused by air pollutants. The plants were exposed to filtered air (FA) and non-filtered air (NFA) in open-top chambers installed next to an oil refinery in Cubatão during six exposure periods of 90 days each, which included the winter and summer seasons. After exposure, several analyses were performed, including the foliar concentrations of ascorbic acid and glutathione in its reduced (AsA and GSH), total (totAA and totG) and oxidized forms (DHA and GSSG); their ratios (AsA/totAA and GSH/totG); the enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR); and the content of malondialdehyde (MDA). The range of antioxidant responses in T. pulchra plants varied seasonally and was stimulated by high or low air pollutant concentrations and/or air temperatures. Glutathione and APX were primarily responsible for increasing plant tolerance to oxidative stress originating from air pollution in the region. The high or low air temperatures mainly affected enzymatic activity. The content of MDA increased in response to increasing ozone concentration, thus indicating that the pro-oxidant/antioxidant balance may not have been reached.


Assuntos
Melastomataceae/fisiologia , Estresse Oxidativo , Poluentes Atmosféricos/toxicidade , Poluição do Ar , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Brasil , Catalase/metabolismo , Monitoramento Ambiental , Indústrias Extrativas e de Processamento , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Malondialdeído/metabolismo , Melastomataceae/metabolismo , Oxirredução , Ozônio , Poluição por Petróleo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA