Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 25(12): 1833-1847, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945904

RESUMO

MAF amplification increases the risk of breast cancer (BCa) metastasis through mechanisms that are still poorly understood yet have important clinical implications. Oestrogen-receptor-positive (ER+) BCa requires oestrogen for both growth and metastasis, albeit by ill-known mechanisms. Here we integrate proteomics, transcriptomics, epigenomics, chromatin accessibility and functional assays from human and syngeneic mouse BCa models to show that MAF directly interacts with oestrogen receptor alpha (ERα), thereby promoting a unique chromatin landscape that favours metastatic spread. We identify metastasis-promoting genes that are de novo licensed following oestrogen exposure in a MAF-dependent manner. The histone demethylase KDM1A is key to the epigenomic remodelling that facilitates the expression of the pro-metastatic MAF/oestrogen-driven gene expression program, and loss of KDM1A activity prevents this metastasis. We have thus determined that the molecular basis underlying MAF/oestrogen-mediated metastasis requires genetic, epigenetic and hormone signals from the systemic environment, which influence the ability of BCa cells to metastasize.


Assuntos
Neoplasias da Mama , Epigênese Genética , Receptor alfa de Estrogênio , Amplificação de Genes , Proteínas Proto-Oncogênicas c-maf , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cromatina , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Proteínas Proto-Oncogênicas c-maf/genética
2.
Eur J Med Chem ; 243: 114770, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36148710

RESUMO

In the last four decades, treatment of oestrogen receptor positive (ER+) breast cancer (BCa), has focused on targeting the estrogenic receptor signaling pathway. This signaling function is pivotal to sustain cell proliferation. Tamoxifen, a competitive inhibitor of oestrogen, has played a major role in therapeutics. However, primary and acquired resistance to hormone blockade occurs in a large subset of these cancers, and new approaches are urgently needed. Aromatase inhibitors and receptor degraders were approved and alternatively used. Yet, resistance appears in the metastatic setting. Here we report the design and synthesis of a series of proteolysis targeting chimeras (PROTACs) that induce the degradation of estrogen receptor alpha in breast cancer MCF-7 (ER+) cells at nanomolar concentration. Using a warhead based on 4-hydroxytamoxifen, bifunctional degraders recruiting either cereblon or the Von Hippel Lindau E3 ligases were synthesized. Our efforts resulted in the discovery of TVHL-1, a potent ERα degrader (DC50: 4.5 nM) that we envisage as a useful tool for biological study and a platform for potential therapeutics.


Assuntos
Neoplasias da Mama , Receptores de Estrogênio , Humanos , Feminino , Receptores de Estrogênio/metabolismo , Proteólise , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Quimera/metabolismo , Tamoxifeno/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Receptor alfa de Estrogênio/metabolismo , Neoplasias da Mama/tratamento farmacológico
3.
Trends Cancer ; 8(7): 570-582, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35370115

RESUMO

Genetic studies suggest that sequential dissemination from a primary metastasis, usually at the bone, is a major route of metastatic progression in early, radically resected cancer. Disseminated tumor cells (DTCs) can likely infiltrate but not grow, and may remain dormant once disseminated for extended intervals (from months to decades). The stationary nature of DTCs prevents them from being successfully treated as an asymptomatic residual disease in the adjuvant setting; critically, they can eventually relapse, adapt, and develop therapy resistance, causing incurable overt metastasis. Metastatic lesions usually first appear in one tissue, which invigorates metastatic cells for further dissemination to other organs, with a fatal outcome. Clinical and genetic data now indicate that metastatic lesions in one organ can seed secondary metastases in other organs: in other words, metastasis arising from metastasis. Herein we discuss recent insight into metastasis cell dormancy mechanisms, survival, communication with the local microenvironment, and eventual changes that endow DTCs with the capacity to expand and colonize to other metastatic sites.


Assuntos
Recidiva Local de Neoplasia , Microambiente Tumoral , Progressão da Doença , Humanos , Recidiva Local de Neoplasia/genética , Neoplasia Residual/patologia , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA