Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38953209

RESUMO

The advent of high-dimensional imaging offers new opportunities to molecularly characterize diagnostic cells in disorders that have previously relied on histopathological definitions. One example case is found in tuberous sclerosis complex (TSC), a developmental disorder characterized by systemic growth of benign tumors. Within resected brain tissues from patients with TSC, detection of abnormally enlarged balloon cells (BCs) is pathognomonic for this disorder. Though BCs can be identified by an expert neuropathologist, little is known about the specificity and broad applicability of protein markers for these cells, complicating classification of proposed BCs identified in experimental models of this disorder. Here, we report the development of a customized machine learning pipeline (BAlloon IDENtifier; BAIDEN) that was trained to prospectively identify BCs in tissue sections using a histological stain compatible with high-dimensional cytometry. This approach was coupled to a custom 36-antibody panel and imaging mass cytometry (IMC) to explore the expression of multiple previously proposed BC marker proteins and develop a descriptor of BC features conserved across multiple tissue samples from patients with TSC. Here, we present a modular workflow encompassing BAIDEN, a custom antibody panel, a control sample microarray, and analysis pipelines-both open-source and in-house-and apply this workflow to understand the abundance, structure, and signaling activity of BCs as an example case of how high-dimensional imaging can be applied within human tissues.

2.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895266

RESUMO

Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. While benign tumors in the heart, lungs, kidney, and brain are all hallmarks of the disease, the most severe symptoms of TSC are often neurological, including seizures, autism, psychiatric disorders, and intellectual disabilities. TSC is caused by loss of function mutations in the TSC1 or TSC2 genes and consequent dysregulation of signaling via mechanistic Target of Rapamycin Complex 1 (mTORC1). While TSC neurological phenotypes are well-documented, it is not yet known how early in neural development TSC1/2-mutant cells diverge from the typical developmental trajectory. Another outstanding question is the contribution of homozygous-mutant cells to disease phenotypes and whether such phenotypes are also seen in the heterozygous-mutant populations that comprise the vast majority of cells in patients. Using TSC patient-derived isogenic induced pluripotent stem cells (iPSCs) with defined genetic changes, we observed aberrant early neurodevelopment in vitro, including misexpression of key proteins associated with lineage commitment and premature electrical activity. These alterations in differentiation were coincident with hundreds of differentially methylated DNA regions, including loci associated with key genes in neurodevelopment. Collectively, these data suggest that mutation or loss of TSC2 affects gene regulation and expression at earlier timepoints than previously appreciated, with implications for whether and how prenatal treatment should be pursued.

3.
J Neurodev Disord ; 16(1): 27, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783199

RESUMO

BACKGROUND: Tuberous sclerosis complex (TSC) is a multi-system genetic disease that causes benign tumors in the brain and other vital organs. The most debilitating symptoms result from involvement of the central nervous system and lead to a multitude of severe symptoms including seizures, intellectual disability, autism, and behavioral problems. TSC is caused by heterozygous mutations of either the TSC1 or TSC2 gene and dysregulation of mTOR kinase with its multifaceted downstream signaling alterations is central to disease pathogenesis. Although the neurological sequelae of the disease are well established, little is known about how these mutations might affect cellular components and the function of the blood-brain barrier (BBB). METHODS: We generated TSC disease-specific cell models of the BBB by leveraging human induced pluripotent stem cell and microfluidic cell culture technologies. RESULTS: Using microphysiological systems, we demonstrate that a BBB generated from TSC2 heterozygous mutant cells shows increased permeability. This can be rescued by wild type astrocytes or by treatment with rapamycin, an mTOR kinase inhibitor. CONCLUSION: Our results demonstrate the utility of microphysiological systems to study human neurological disorders and advance our knowledge of cell lineages contributing to TSC pathogenesis and informs future therapeutics.


Assuntos
Barreira Hematoencefálica , Células-Tronco Pluripotentes Induzidas , Proteína 2 do Complexo Esclerose Tuberosa , Esclerose Tuberosa , Esclerose Tuberosa/fisiopatologia , Esclerose Tuberosa/genética , Humanos , Barreira Hematoencefálica/fisiopatologia , Proteína 2 do Complexo Esclerose Tuberosa/genética , Sirolimo/farmacologia , Astrócitos/metabolismo
4.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617241

RESUMO

Tumor metastasis, the main cause of death in cancer patients, requires outgrowth of tumor cells after their dissemination and residence in microscopic niches. Nutrient sufficiency is a determinant of such outgrowth1. Fatty acids (FA) can be metabolized by cancer cells for their energetic and anabolic needs but impair the cytotoxicity of T cells in the tumor microenvironment (TME)2,3, thereby supporting metastatic progression. However, despite the important role of FA in metastatic outgrowth, the regulation of intratumoral FA is poorly understood. In this report, we show that tumor endothelium actively promotes tumor growth and restricts anti-tumor cytolysis by transferring FA into developing metastatic tumors. This process uses transendothelial fatty acid transport via endosome cargo trafficking in a mechanism that requires mTORC1 activity. Thus, tumor burden was significantly reduced upon endothelial-specific targeted deletion of Raptor, a unique component of the mTORC1 complex (RptorECKO). In vivo trafficking of a fluorescent palmitic acid analog to tumor cells and T cells was reduced in RptorECKO lung metastatic tumors, which correlated with improved markers of T cell cytotoxicity. Combination of anti-PD1 with RAD001/everolimus, at a low dose that selectively inhibits mTORC1 in endothelial cells4, impaired FA uptake in T cells and reduced metastatic disease, corresponding to improved anti-tumor immunity. These findings describe a novel mechanism of transendothelial fatty acid transfer into the TME during metastatic outgrowth and highlight a target for future development of therapeutic strategies.

5.
Bioengineering (Basel) ; 11(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38534508

RESUMO

The implementation of three-dimensional tissue engineering concurrently with stem cell technology holds great promise for in vitro research in pharmacology and toxicology and modeling cardiac diseases, particularly for rare genetic and pediatric diseases for which animal models, immortal cell lines, and biopsy samples are unavailable. It also allows for a rapid assessment of phenotype-genotype relationships and tissue response to pharmacological manipulation. Mutations in the TSC1 and TSC2 genes lead to dysfunctional mTOR signaling and cause tuberous sclerosis complex (TSC), a genetic disorder that affects multiple organ systems, principally the brain, heart, skin, and kidneys. Here we differentiated healthy (CC3) and tuberous sclerosis (TSP8-15) human induced pluripotent stem cells (hiPSCs) into cardiomyocytes to create engineered cardiac tissue constructs (ECTCs). We investigated and compared their mechano-elastic properties and gene expression and assessed the effects of rapamycin, a potent inhibitor of the mechanistic target of rapamycin (mTOR). The TSP8-15 ECTCs had increased chronotropy compared to healthy ECTCs. Rapamycin induced positive inotropic and chronotropic effects (i.e., increased contractility and beating frequency, respectively) in the CC3 ECTCs but did not cause significant changes in the TSP8-15 ECTCs. A differential gene expression analysis revealed 926 up- and 439 down-regulated genes in the TSP8-15 ECTCs compared to their healthy counterparts. The application of rapamycin initiated the differential expression of 101 and 31 genes in the CC3 and TSP8-15 ECTCs, respectively. A gene ontology analysis showed that in the CC3 ECTCs, the positive inotropic and chronotropic effects of rapamycin correlated with positively regulated biological processes, which were primarily related to the metabolism of lipids and fatty and amino acids, and with negatively regulated processes, which were predominantly associated with cell proliferation and muscle and tissue development. In conclusion, this study describes for the first time an in vitro TSC cardiac tissue model, illustrates the response of normal and TSC ECTCs to rapamycin, and provides new insights into the mechanisms of TSC.

6.
Clin Case Rep ; 11(11): e8238, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38028041

RESUMO

Key Clinical Message: The presentation of posterior reversible encephalopathy syndrome (PRES) as the initial presenting sign of acute lymphoblastic leukemia is unusual, as PRES is more often a complication of therapy. This case highlights the importance of maintaining a broad differential diagnosis for pediatric hypertension and its complications. Abstract: A 6-year-old male presented with a seizure-like episode. Evaluation revealed hypertension and brain imaging showed findings consistent with posterior reversible encephalopathy syndrome. Complete blood count showed lymphoblasts, and the cause of his hypertension was determined to be renal infiltration of leukemia cells due to B-cell acute lymphoblastic leukemia.

7.
PLoS One ; 18(10): e0292086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37792789

RESUMO

Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. TSC is caused by mutations in the TSC1 or TSC2 genes, which encode the hamartin/tuberin proteins respectively. These proteins function as a heterodimer that negatively regulates the mechanistic Target of Rapamycin Complex 1 (mTORC1). TSC research has focused on the effects of mTORC1, a critical signaling hub, on regulation of diverse cell processes including metabolism, cell growth, translation, and neurogenesis. However, non-canonical functions of TSC2 are not well studied, and the potential disease-relevant biological mechanisms of mutations affecting these functions are not well understood. We observed aberrant multipolar mitotic division, a novel phenotype, in TSC2 mutant iPSCs. The multipolar phenotype is not meaningfully affected by treatment with the inhibitor rapamycin. We further observed dominant negative activity of the mutant form of TSC2 in producing the multipolar division phenotype. These data expand the knowledge of TSC2 function and pathophysiology which will be highly relevant to future treatments for patients with TSC.


Assuntos
Transdução de Sinais , Proteínas Supressoras de Tumor , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Mutantes , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
8.
bioRxiv ; 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38168450

RESUMO

Tuberous sclerosis complex (TSC) is a multi-system genetic disease that causes benign tumors in the brain and other vital organs. The most debilitating symptoms result from involvement of the central nervous system and lead to a multitude of severe symptoms including seizures, intellectual disability, autism, and behavioral problems. TSC is caused by heterozygous mutations of either the TSC1 or TSC2 gene. Dysregulation of mTOR kinase with its multifaceted downstream signaling alterations is central to disease pathogenesis. Although the neurological sequelae of the disease are well established, little is known about how these mutations might affect cellular components and the function of the blood-brain barrier (BBB). We generated disease-specific cell models of the BBB by leveraging human induced pluripotent stem cell and microfluidic cell culture technologies. Using these microphysiological systems, we demonstrate that the BBB generated from TSC2 heterozygous mutant cells shows increased permeability which can be rescued by wild type astrocytes and with treatment with rapamycin, an mTOR kinase inhibitor. Our results further demonstrate the utility of microphysiological systems to study human neurological disorders and advance our knowledge of the cell lineages contributing to TSC pathogenesis.

10.
MMWR Morb Mortal Wkly Rep ; 70(32): 1094-1099, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34383735

RESUMO

In December 2020, the Food and Drug Administration (FDA) issued Emergency Use Authorizations (EUAs) for Pfizer-BioNTech and Moderna COVID-19 vaccines, and in February 2021, FDA issued an EUA for the Janssen (Johnson & Johnson) COVID-19 vaccine. After each EUA, the Advisory Committee on Immunization Practices (ACIP) issued interim recommendations for vaccine use; currently Pfizer-BioNTech is authorized and recommended for persons aged ≥12 years and Moderna and Janssen for persons aged ≥18 years (1-3). Both Pfizer-BioNTech and Moderna vaccines, administered as 2-dose series, are mRNA-based COVID-19 vaccines, whereas the Janssen COVID-19 vaccine, administered as a single dose, is a recombinant replication-incompetent adenovirus-vector vaccine. As of July 22, 2021, 187 million persons in the United States had received at least 1 dose of COVID-19 vaccine (4); close monitoring of safety surveillance has demonstrated that serious adverse events after COVID-19 vaccination are rare (5,6). Three medical conditions have been reported in temporal association with receipt of COVID-19 vaccines. Two of these (thrombosis with thrombocytopenia syndrome [TTS], a rare syndrome characterized by venous or arterial thrombosis and thrombocytopenia, and Guillain-Barré syndrome [GBS], a rare autoimmune neurologic disorder characterized by ascending weakness and paralysis) have been reported after Janssen COVID-19 vaccination. One (myocarditis, cardiac inflammation) has been reported after Pfizer-BioNTech COVID-19 vaccination or Moderna COVID-19 vaccination, particularly after the second dose; these were reviewed together and will hereafter be referred to as mRNA COVID-19 vaccination. ACIP has met three times to review the data associated with these reports of serious adverse events and has comprehensively assessed the benefits and risks associated with receipt of these vaccines. During the most recent meeting in July 2021, ACIP determined that, overall, the benefits of COVID-19 vaccination in preventing COVID-19 morbidity and mortality outweigh the risks for these rare serious adverse events in adults aged ≥18 years; this balance of benefits and risks varied by age and sex. ACIP continues to recommend COVID-19 vaccination in all persons aged ≥12 years. CDC and FDA continue to closely monitor reports of serious adverse events and will present any additional data to ACIP for consideration. Information regarding risks and how they vary by age and sex and type of vaccine should be disseminated to providers, vaccine recipients, and the public.


Assuntos
Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , Imunização/normas , Guias de Prática Clínica como Assunto , Adulto , Sistemas de Notificação de Reações Adversas a Medicamentos , Comitês Consultivos , COVID-19/epidemiologia , Aprovação de Drogas , Humanos , Estados Unidos/epidemiologia , Vacinas Sintéticas , Vacinas de mRNA
11.
Neurobiol Dis ; 143: 104975, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32574724

RESUMO

Mutations in the DEPDC5 gene can cause epilepsy, including forms with and without brain malformations. The goal of this study was to investigate the contribution of DEPDC5 gene dosage to the underlying neuropathology of DEPDC5-related epilepsies. We generated induced pluripotent stem cells (iPSCs) from epilepsy patients harboring heterozygous loss of function mutations in DEPDC5. Patient iPSCs displayed increases in both phosphorylation of ribosomal protein S6 and proliferation rate, consistent with elevated mTORC1 activation. In line with these findings, we observed increased soma size in patient iPSC-derived cortical neurons that was rescued with rapamycin treatment. These data indicate that human cells heterozygous for DEPDC5 loss-of-function mutations are haploinsufficient for control of mTORC1 signaling. Our findings suggest that human pathology differs from mouse models of DEPDC5-related epilepsies, which do not show consistent phenotypic differences in heterozygous neurons, and support the need for human-based models to affirm and augment the findings from animal models of DEPDC5-related epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos/genética , Proteínas Ativadoras de GTPase/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Epilepsia Resistente a Medicamentos/metabolismo , Haploinsuficiência , Humanos , Células-Tronco Pluripotentes Induzidas , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/metabolismo , Transdução de Sinais/fisiologia
12.
Neurobiol Dis ; 141: 104881, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32348881

RESUMO

Alternating hemiplegia of childhood (AHC) is a rare neurodevelopmental disease caused by heterozygous de novo missense mutations in the ATP1A3 gene that encodes the neuronal specific α3 subunit of the Na,K-ATPase (NKA) pump. Mechanisms underlying patient episodes including environmental triggers remain poorly understood, and there are no empirically proven treatments for AHC. In this study, we generated patient-specific induced pluripotent stem cells (iPSCs) and isogenic controls for the E815K ATP1A3 mutation that causes the most phenotypically severe form of AHC. Using an in vitro iPSC-derived cortical neuron disease model, we found elevated levels of ATP1A3 mRNA in AHC lines compared to controls, without significant perturbations in protein expression. Microelectrode array analyses demonstrated that in cortical neuronal cultures, ATP1A3+/E815K iPSC-derived neurons displayed less overall activity than neurons differentiated from isogenic mutation-corrected and unrelated control cell lines. However, induction of cellular stress by elevated temperature revealed a hyperactivity phenotype following heat stress in ATP1A3+/E815K neurons compared to control lines. Treatment with flunarizine, a drug commonly used to prevent AHC episodes, did not impact this stress-triggered phenotype. These findings support the use of iPSC-derived neuronal cultures for studying complex neurodevelopmental conditions such as AHC and provide a platform for mechanistic discovery in a human disease model.


Assuntos
Hemiplegia/metabolismo , Neurônios/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Diferenciação Celular , Células Cultivadas , Córtex Cerebral/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Mutação de Sentido Incorreto , Fenótipo , RNA Mensageiro/metabolismo
13.
Am J Physiol Renal Physiol ; 317(5): F1201-F1210, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31461347

RESUMO

Tuberous sclerosis complex 2 (TSC2), or tuberin, is a pivotal regulator of the mechanistic target of rapamycin signaling pathway that controls cell survival, proliferation, growth, and migration. Loss of Tsc2 function manifests in organ-specific consequences, the mechanisms of which remain incompletely understood. Recent single cell analysis of the kidney has identified ATP-binding cassette G2 (Abcg2) expression in renal proximal tubules of adult mice as well as a in a novel cell population. The impact in adult kidney of Tsc2 knockdown in the Abcg2-expressing lineage has not been evaluated. We engineered an inducible system in which expression of truncated Tsc2, lacking exons 36-37 with an intact 3' region and polycystin 1, is driven by Abcg2. Here, we demonstrate that selective expression of Tsc2fl36-37 in the Abcg2pos lineage drives recombination in proximal tubule epithelial and rare perivascular mesenchymal cells, which results in progressive proximal tubule injury, impaired kidney function, formation of cystic lesions, and fibrosis in adult mice. These data illustrate the critical importance of Tsc2 function in the Abcg2-expressing proximal tubule epithelium and mesenchyme during the development of cystic lesions and remodeling of kidney parenchyma.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Fibrose/patologia , Doenças Renais Policísticas/patologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Linhagem da Célula , Feminino , Fibrose/genética , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Miofibroblastos/fisiologia , Doenças Renais Policísticas/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
15.
Neurobiol Dis ; 129: 93-101, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31078684

RESUMO

Astrocytes serve many functions in the human brain, many of which focus on maintenance of homeostasis. Astrocyte dysfunction in Tuberous Sclerosis Complex (TSC) has long been appreciated with activation of the mTORC1 signaling pathway resulting in gliosis and possibly contributing to the very frequent phenotype of epilepsy. We hypothesized that aberrant expression of the astrocyte protein aquaporin-4 (AQP4) may be present in TSC and contribute to disease pathology. Characterization of AQP4 expression in epileptic cortex from TSC patients demonstrated a diffuse increase in AQP4. To determine if this was due to exposure to seizures, we examined Aqp4 expression in mouse models of TSC in which Tsc1 or Tsc2 inactivation was targeted to astrocytes or glial progenitors, respectively. Loss of either Tsc1 or Tsc2 from astrocytes resulted in a marked increase in Aqp4 expression which was sensitive to mTORC1 inhibition with rapamycin. Our findings in both TSC epileptogenic cortex and in a variety of astrocyte culture models demonstrate for the first time that AQP4 expression is dysregulated in TSC. The extent to which AQP4 contributes to epilepsy in TSC is not known, though the similarities in AQP4 expression between TSC and temporal lobe epilepsy supports further studies targeting AQP4 in TSC.


Assuntos
Aquaporina 4/biossíntese , Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Convulsões/metabolismo , Esclerose Tuberosa/metabolismo , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Humanos , Recém-Nascido , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Convulsões/etiologia , Esclerose Tuberosa/complicações
16.
Life Sci Alliance ; 2(2)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30910807

RESUMO

Neural stem/progenitor cells (NSPCs) of the ventricular-subventricular zone (V-SVZ) are candidate cells of origin for many brain tumors. However, whether NSPCs in different locations within the V-SVZ differ in susceptibility to tumorigenic mutations is unknown. Here, single-cell measurements of signal transduction intermediates in the mechanistic target of rapamycin complex 1 (mTORC1) pathway reveal that ventral NSPCs have higher levels of signaling than dorsal NSPCs. These features are linked with differences in mTORC1-driven disease severity: introduction of a pathognomonic Tsc2 mutation only results in formation of tumor-like masses from the ventral V-SVZ. We propose a direct link between location-dependent intrinsic growth properties imbued by mTORC1 and predisposition to tumor development.


Assuntos
Astrocitoma/metabolismo , Astrocitoma/patologia , Carcinogênese/metabolismo , Ventrículos Laterais/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Células-Tronco Neurais/metabolismo , Esclerose Tuberosa/patologia , Adolescente , Animais , Células Cultivadas , Criança , Pré-Escolar , Suscetibilidade a Doenças/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fator Nuclear 1 de Tireoide/metabolismo
17.
Neurobiol Dis ; 115: 29-38, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29567111

RESUMO

Mutations in ATP1A3 encoding the catalytic subunit of the Na/K-ATPase expressed in mammalian neurons cause alternating hemiplegia of childhood (AHC) as well as an expanding spectrum of other neurodevelopmental syndromes and neurological phenotypes. Most AHC cases are explained by de novo heterozygous ATP1A3 mutations, but the fundamental molecular and cellular consequences of these mutations in human neurons are not known. In this study, we investigated the electrophysiological properties of neurons generated from AHC patient-specific induced pluripotent stem cells (iPSCs) to ascertain functional disturbances underlying this neurological disease. Fibroblasts derived from two subjects with AHC, a male and a female, both heterozygous for the common ATP1A3 mutation G947R, were reprogrammed to iPSCs. Neuronal differentiation of iPSCs was initiated by neurogenin-2 (NGN2) induction followed by co-culture with mouse glial cells to promote maturation of cortical excitatory neurons. Whole-cell current clamp recording demonstrated that, compared with control iPSC-derived neurons, neurons differentiated from AHC iPSCs exhibited a significantly lower level of ouabain-sensitive outward current ('pump current'). This finding correlated with significantly depolarized potassium equilibrium potential and depolarized resting membrane potential in AHC neurons compared with control neurons. In this cellular model, we also observed a lower evoked action potential firing frequency when neurons were held at their resting potential. However, evoked action potential firing frequencies were not different between AHC and control neurons when the membrane potential was clamped to -80 mV. Impaired neuronal excitability could be explained by lower voltage-gated sodium channel availability at the depolarized membrane potential observed in AHC neurons. Our findings provide direct evidence of impaired neuronal Na/K-ATPase ion transport activity in human AHC neurons and demonstrate the potential impact of this genetic defect on cellular excitability.


Assuntos
Hemiplegia/diagnóstico , Hemiplegia/fisiopatologia , Potenciais da Membrana/fisiologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Adulto , Animais , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Técnicas de Cocultura , Feminino , Hemiplegia/genética , Humanos , Lactente , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Camundongos , Adulto Jovem
18.
Hum Mol Genet ; 26(23): 4629-4641, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973543

RESUMO

Tuberous sclerosis complex (TSC) is a pediatric disorder of dysregulated growth and differentiation caused by loss of function mutations in either the TSC1 or TSC2 genes, which regulate mTOR kinase activity. To study aberrations of early development in TSC, we generated induced pluripotent stem cells using dermal fibroblasts obtained from patients with TSC. During validation, we found that stem cells generated from TSC patients had a very high rate of integration of the reprogramming plasmid containing a shRNA against TP53. We also found that loss of one allele of TSC2 in human fibroblasts is sufficient to increase p53 levels and impair stem cell reprogramming. Increased p53 was also observed in TSC2 heterozygous and homozygous mutant human stem cells, suggesting that the interactions between TSC2 and p53 are consistent across cell types and gene dosage. These results support important contributions of TSC2 heterozygous and homozygous mutant cells to the pathogenesis of TSC and the important role of p53 during reprogramming.


Assuntos
Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Perda de Heterozigosidade , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Genes p53 , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Lactente , Masculino , Mutação , RNA Interferente Pequeno/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Esclerose Tuberosa/genética , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/patologia , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa
19.
Pediatr Neurol ; 60: 1-12, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27267556

RESUMO

On March 10 to March 12, 2015, the National Institute of Neurological Disorders and Stroke and the Tuberous Sclerosis Alliance sponsored a workshop in Bethesda, Maryland, to assess progress and new opportunities for research in tuberous sclerosis complex with the goal of updating the 2003 Research Plan for Tuberous Sclerosis (http://www.ninds.nih.gov/about_ninds/plans/tscler_research_plan.htm). In addition to the National Institute of Neurological Disorders and Stroke and Tuberous Sclerosis Alliance, participants in the strategic planning effort and workshop included representatives from six other Institutes of the National Institutes of Health, the Department of Defense Tuberous Sclerosis Complex Research Program, and a broad cross-section of basic scientists and clinicians with expertise in tuberous sclerosis complex along with representatives from the pharmaceutical industry. Here we summarize the outcomes from the extensive premeeting deliberations and final workshop recommendations, including (1) progress in the field since publication of the initial 2003 research plan for tuberous sclerosis complex, (2) the key gaps, needs, and challenges that hinder progress in tuberous sclerosis complex research, and (3) a new set of research priorities along with specific recommendations for addressing the major challenges in each priority area. The new research plan is organized around both short-term and long-term goals with the expectation that progress toward specific objectives can be achieved within a five to ten year time frame.


Assuntos
Pesquisa Biomédica , Esclerose Tuberosa/fisiopatologia , Esclerose Tuberosa/terapia , Animais , Modelos Animais de Doenças , Objetivos , Humanos , Planejamento Estratégico , Esclerose Tuberosa/genética , Estados Unidos
20.
PLoS One ; 11(3): e0150372, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26982737

RESUMO

Alterations in DNA damage response and repair have been observed in Huntington's disease (HD). We generated induced pluripotent stem cells (iPSC) from primary dermal fibroblasts of 5 patients with HD and 5 control subjects. A significant fraction of the HD iPSC lines had genomic abnormalities as assessed by karyotype analysis, while none of our control lines had detectable genomic abnormalities. We demonstrate a statistically significant increase in genomic instability in HD cells during reprogramming. We also report a significant association with repeat length and severity of this instability. Our karyotypically normal HD iPSCs also have elevated ATM-p53 signaling as shown by elevated levels of phosphorylated p53 and H2AX, indicating either elevated DNA damage or hypersensitive DNA damage signaling in HD iPSCs. Thus, increased DNA damage responses in the HD genotype is coincidental with the observed chromosomal aberrations. We conclude that the disease causing mutation in HD increases the propensity of chromosomal instability relative to control fibroblasts specifically during reprogramming to a pluripotent state by a commonly used episomal-based method that includes p53 knockdown.


Assuntos
Técnicas de Silenciamento de Genes , Instabilidade Genômica , Doença de Huntington/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Proteína Supressora de Tumor p53/genética , Adulto , Idoso , Células Cultivadas , Dano ao DNA , Humanos , Doença de Huntington/genética , Cariotipagem , Pessoa de Meia-Idade , Inibidores da Síntese de Ácido Nucleico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem , Zinostatina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA