Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 75: 103211, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38908072

RESUMO

Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.

2.
Allergy ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573073

RESUMO

BACKGROUND: Extracellular vesicles (EVs) have been implicated in the pathogenesis of asthma, however, how EVs contribute to immune dysfunction and type 2 airway inflammation remains incompletely understood. We aimed to elucidate roles of airway EVs and their miRNA cargo in the pathogenesis of NSAID-exacerbated respiratory disease (N-ERD), a severe type 2 inflammatory condition. METHODS: EVs were isolated from induced sputum or supernatants of cultured nasal polyp or turbinate tissues of N-ERD patients or healthy controls by size-exclusion chromatography and characterized by particle tracking, electron microscopy and miRNA sequencing. Functional effects of EV miRNAs on gene expression and mediator release by human macrophages or normal human bronchial epithelial cells (NHBEs) were studied by RNA sequencing, LC-MS/MS and multiplex cytokine assays. RESULTS: EVs were highly abundant in secretions from the upper and lower airways of N-ERD patients. N-ERD airway EVs displayed profoundly altered immunostimulatory capacities and miRNA profiles compared to airway EVs of healthy individuals. Airway EVs of N-ERD patients, but not of healthy individuals induced inflammatory cytokine (GM-CSF and IL-8) production by NHBEs. In macrophages, N-ERD airway EVs exhibited an impaired potential to induce cytokine and prostanoid production, while enhancing M2 macrophage activation. Let-7 family miRNAs were highly enriched in sputum EVs from N-ERD patients and mimicked suppressive effects of N-ERD EVs on macrophage activation. CONCLUSION: Aberrant airway EV miRNA profiles may contribute to immune dysfunction and chronic type 2 inflammation in N-ERD. Let-7 family miRNAs represent targets for correcting aberrant macrophage activation and mediator responses in N-ERD.

3.
Sci Adv ; 9(43): eadg6874, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37878703

RESUMO

Interleukins are secreted proteins that regulate immune responses. Among these, the interleukin 12 (IL-12) family holds a central position in inflammatory and infectious diseases. Each family member consists of an α and a ß subunit that together form a composite cytokine. Within the IL-12 family, IL-35 remains particularly ill-characterized on a molecular level despite its key role in autoimmune diseases and cancer. Here we show that both IL-35 subunits, IL-12α and EBI3, mutually promote their secretion from cells but are not necessarily secreted as a heterodimer. Our data demonstrate that IL-12α and EBI3 are stable proteins in isolation that act as anti-inflammatory molecules. Both reduce secretion of proinflammatory cytokines and induce the development of regulatory T cells. Together, our study reveals IL-12α and EBI3, the subunits of IL-35, to be functionally active anti-inflammatory immune molecules on their own. This extends our understanding of the human cytokine repertoire as a basis for immunotherapeutic approaches.


Assuntos
Interleucina-12 , Interleucinas , Humanos , Citocinas/metabolismo , Interleucina-12/metabolismo , Interleucinas/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Linfócitos T Reguladores
4.
Front Immunol ; 14: 1157373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37081886

RESUMO

Allergic inflammation of the airways such as allergic asthma is a major health problem with growing incidence world-wide. One cardinal feature in severe type 2-dominated airway inflammation is the release of lipid mediators of the eicosanoid family that can either promote or dampen allergic inflammation. Macrophages are key producers of prostaglandins and leukotrienes which play diverse roles in allergic airway inflammation and thus require tight control. Using RNA- and ATAC-sequencing, liquid chromatography coupled to mass spectrometry (LC-MS/MS), enzyme immunoassays (EIA), gene expression analysis and in vivo models, we show that the aryl hydrocarbon receptor (AhR) contributes to this control via transcriptional regulation of lipid mediator synthesis enzymes in bone marrow-derived as well as in primary alveolar macrophages. In the absence or inhibition of AhR activity, multiple genes of both the prostaglandin and the leukotriene pathway were downregulated, resulting in lower synthesis of prostanoids, such as prostaglandin E2 (PGE2), and cysteinyl leukotrienes, e.g., Leukotriene C4 (LTC4). These AhR-dependent genes include PTGS1 encoding for the enzyme cyclooxygenase 1 (COX1) and ALOX5 encoding for the arachidonate 5-lipoxygenase (5-LO) both of which major upstream regulators of the prostanoid and leukotriene pathway, respectively. This regulation is independent of the activation stimulus and partially also detectable in unstimulated macrophages suggesting an important role of basal AhR activity for eicosanoid production in steady state macrophages. Lastly, we demonstrate that AhR deficiency in hematopoietic but not epithelial cells aggravates house dust mite induced allergic airway inflammation. These results suggest an essential role for AhR-dependent eicosanoid regulation in macrophages during homeostasis and inflammation.


Assuntos
Macrófagos Alveolares , Receptores de Hidrocarboneto Arílico , Humanos , Cromatografia Líquida , Dinoprostona , Eicosanoides/metabolismo , Inflamação/metabolismo , Leucotrienos , Macrófagos Alveolares/metabolismo , Prostaglandinas , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Espectrometria de Massas em Tandem
5.
Mucosal Immunol ; 15(6): 1158-1169, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-36065058

RESUMO

Immunological memory of innate immune cells, also termed "trained immunity", allows for cross-protection against distinct pathogens, but may also drive chronic inflammation. Recent studies have shown that memory responses associated with type 2 immunity do not solely rely on adaptive immune cells, such as T- and B cells, but also involve the innate immune system and epithelial cells. Memory responses have been described for monocytes, macrophages and airway epithelial cells of asthmatic patients as well as for macrophages and group 2 innate lymphoid cells (ILC2) from allergen-sensitized or helminth-infected mice. The metabolic and epigenetic mechanisms that mediate allergen- or helminth-induced reprogramming of innate immune cells are only beginning to be uncovered. Trained immunity has been implicated in helminth-driven immune regulation and allergen-specific immunotherapy, suggesting its exploitation in future therapies. Here, we discuss recent advances and key remaining questions regarding the mechanisms and functions of trained type 2 immunity in infection and inflammation.


Assuntos
Imunidade Inata , Linfócitos , Camundongos , Animais , Memória Imunológica , Inflamação , Alérgenos , Imunidade Adaptativa
6.
mBio ; 13(4): e0123922, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35695427

RESUMO

Eosinophilia is associated with various persisting inflammatory diseases and often coincides with chronic fungal infections or fungal allergy as in the case of allergic bronchopulmonary aspergillosis (ABPA). Here, we show that intranasal administration of live Aspergillus fumigatus conidia causes fatal lung damage in eosinophilic interleukin-5 (IL-5)-transgenic mice. To further investigate the activation of eosinophils by A. fumigatus, we established a coculture system of mouse bone marrow-derived eosinophils (BMDE) with different A. fumigatus morphotypes and analyzed the secretion of cytokines, chemokines, and eicosanoids. A. fumigatus-stimulated BMDE upregulated expression of CD11b and downregulated CD62L and CCR3. They further secreted several proinflammatory mediators, including IL-4, IL-13, IL-18, macrophage inflammatory protein-1α (MIP-1α)/CC chemokine ligand 3 (CCL3), MIP-1ß/CCL4, and thromboxane. This effect required direct interaction and adherence between eosinophils and A. fumigatus, as A. fumigatus culture supernatants or A. fumigatus mutant strains with impaired adhesion elicited a rather poor eosinophil response. Unexpectedly, canonical Toll-like receptor (TLR) or C-type-lectin receptor (CLR) signaling was largely dispensable, as the absence of MYD88, TRIF, or caspase recruitment domain-containing protein 9 (CARD9) resulted in only minor alterations. However, transcriptome analysis indicated a role for the PI3K-AKT-mTOR pathway in A. fumigatus-induced eosinophil activation. Correspondingly, we could show that phosphatidylinositol 3-kinase (PI3K) inhibitors successfully prevent A. fumigatus-induced eosinophil activation. The PI3K pathway in eosinophils may therefore serve as a potential drug target to interfere with undesired eosinophil activation in fungus-elicited eosinophilic disorders. IMPORTANCE Allergic bronchopulmonary aspergillosis (ABPA) is caused by the fungus Aspergillus fumigatus, afflicts about five million patients globally, and is still a noncurable disease. ABPA is associated with pronounced lung eosinophilia. Activated eosinophils enhance the inflammatory response not only by degranulation of toxic proteins but also by secretion of small effector molecules. Receptors and signaling pathways involved in activation of eosinophils by A. fumigatus are currently unknown. Here, we show that A. fumigatus-elicited activation of eosinophils requires direct cell-cell contact and results in modulation of cell surface markers and rapid secretion of cytokines, chemokines, and lipid mediators. Unexpectedly, this activation occurred independently of canonical Toll-like receptor or C-type lectin receptor signaling. However, transcriptome analysis indicated a role for the PI3K-AKT-mTOR pathway, and PI3K inhibitors successfully prevented A. fumigatus-induced eosinophil activation. The PI3K pathway may therefore serve as a potential drug target to interfere with undesired eosinophil activation in fungus-elicited eosinophilic disorders.


Assuntos
Aspergilose Broncopulmonar Alérgica , Eosinofilia , Fosfatidilinositol 3-Quinase , Animais , Aspergilose Broncopulmonar Alérgica/genética , Aspergilose Broncopulmonar Alérgica/metabolismo , Aspergillus fumigatus , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Eosinofilia/genética , Eosinofilia/metabolismo , Eosinófilos/metabolismo , Lectinas Tipo C/metabolismo , Camundongos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Mitogênicos/metabolismo , Serina-Treonina Quinases TOR , Receptores Toll-Like/metabolismo
7.
Front Immunol ; 13: 901194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734174

RESUMO

The lung epithelial barrier serves as a guardian towards environmental insults and responds to allergen encounter with a cascade of immune reactions that can possibly lead to inflammation. Whether the environmental sensor aryl hydrocarbon receptor (AhR) together with its downstream targets cytochrome P450 (CYP1) family members contribute to the regulation of allergic airway inflammation remains unexplored. By employing knockout mice for AhR and for single CYP1 family members, we found that AhR-/- and CYP1B1-/- but not CYP1A1-/- or CYP1A2-/- animals display enhanced allergic airway inflammation compared to WT. Expression analysis, immunofluorescence staining of murine and human lung sections and bone marrow chimeras suggest an important role of CYP1B1 in non-hematopoietic lung epithelial cells to prevent exacerbation of allergic airway inflammation. Transcriptional analysis of murine and human lung epithelial cells indicates a functional link of AhR to barrier protection/inflammatory mediator signaling upon allergen challenge. In contrast, CYP1B1 deficiency leads to enhanced expression and activity of CYP1A1 in lung epithelial cells and to an increased availability of the AhR ligand kynurenic acid following allergen challenge. Thus, differential CYP1 family member expression and signaling via the AhR in epithelial cells represents an immunoregulatory layer protecting the lung from exacerbation of allergic airway inflammation.


Assuntos
Citocromo P-450 CYP1A1 , Pulmão , Receptores de Hidrocarboneto Arílico , Alérgenos , Animais , Sistema Enzimático do Citocromo P-450 , Humanos , Inflamação , Pulmão/metabolismo , Pulmão/fisiopatologia , Camundongos , Camundongos Knockout , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
8.
EMBO Rep ; 23(5): e54096, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35357743

RESUMO

Immunoregulation of inflammatory, infection-triggered processes in the brain constitutes a central mechanism to control devastating disease manifestations such as epilepsy. Observational studies implicate the viability of Taenia solium cysts as key factor determining severity of neurocysticercosis (NCC), the most common cause of epilepsy, especially in children, in Sub-Saharan Africa. Viable, in contrast to decaying, cysts mostly remain clinically silent by yet unknown mechanisms, potentially involving Tregs in controlling inflammation. Here, we show that glutamate dehydrogenase from viable cysts instructs tolerogenic monocytes to release IL-10 and the lipid mediator PGE2 . These act in concert, converting naive CD4+ T cells into CD127- CD25hi FoxP3+ CTLA-4+ Tregs, through the G protein-coupled receptors EP2 and EP4 and the IL-10 receptor. Moreover, while viable cyst products strongly upregulate IL-10 and PGE2 transcription in microglia, intravesicular fluid, released during cyst decay, induces pro-inflammatory microglia and TGF-ß as potential drivers of epilepsy. Inhibition of PGE2 synthesis and IL-10 signaling prevents Treg induction by viable cyst products. Harnessing the PGE2 -IL-10 axis and targeting TGF-ß signaling may offer an important therapeutic strategy in inflammatory epilepsy and NCC.


Assuntos
Cistos , Dinoprostona , Criança , Dinoprostona/farmacologia , Humanos , Interleucina-10 , Monócitos , Oxirredutases , Linfócitos T Reguladores
10.
Immunol Cell Biol ; 100(4): 223-234, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35156238

RESUMO

Recent advances in the field of host immunity against parasitic nematodes have revealed the importance of macrophages in trapping tissue migratory larvae. Protective immune mechanisms against the rodent hookworm Nippostrongylus brasiliensis (Nb) are mediated, at least in part, by IL-4-activated macrophages that bind and trap larvae in the lung. However, it is still not clear how host macrophages recognize the parasite. An in vitro co-culture system of bone marrow-derived macrophages and Nb infective larvae was utilized to screen for the possible ligand-receptor pair involved in macrophage attack of larvae. Competitive binding assays revealed an important role for ß-glucan recognition in the process. We further identified a role for CD11b and the non-classical pattern recognition receptor ephrin-A2 (EphA2), but not the highly expressed ß-glucan dectin-1 receptor, in this process of recognition. This work raises the possibility that parasitic nematodes synthesize ß-glucans and it identifies CD11b and ephrin-A2 as important pattern recognition receptors involved in the host recognition of these evolutionary old pathogens. To our knowledge, this is the first time that EphA2 has been implicated in immune responses to a helminth.


Assuntos
Interleucina-4 , Lectinas Tipo C , Ancylostomatoidea , Animais , Interleucina-4/metabolismo , Larva , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Receptores Imunológicos
11.
J Allergy Clin Immunol ; 149(6): 2078-2090, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34974067

RESUMO

BACKGROUND: Infectious agents can reprogram or "train" macrophages and their progenitors to respond more readily to subsequent insults. However, whether such an inflammatory memory exists in type 2 inflammatory conditions such as allergic asthma was not known. OBJECTIVE: We sought to decipher macrophage-trained immunity in allergic asthma. METHODS: We used a combination of clinical sampling of house dust mite (HDM)-allergic patients, HDM-induced allergic airway inflammation in mice, and an in vitro training setup to analyze persistent changes in macrophage eicosanoid, cytokine, and chemokine production as well as the underlying metabolic and epigenetic mechanisms. Transcriptional and metabolic profiles of patient-derived and in vitro trained macrophages were assessed by RNA sequencing or metabolic flux analysis and liquid chromatography-tandem mass spectrometry analysis, respectively. RESULTS: We found that macrophages differentiated from bone marrow or blood monocyte progenitors of HDM-allergic mice or asthma patients show inflammatory transcriptional reprogramming and excessive mediator (TNF-α, CCL17, leukotriene, PGE2, IL-6) responses upon stimulation. Macrophages from HDM-allergic mice initially exhibited a type 2 imprint, which shifted toward a classical inflammatory training over time. HDM-induced allergic airway inflammation elicited a metabolically activated macrophage phenotype, producing high amounts of 2-hydroxyglutarate (2-HG). HDM-induced macrophage training in vitro was mediated by a formyl peptide receptor 2-TNF-2-HG-PGE2/PGE2 receptor 2 axis, resulting in an M2-like macrophage phenotype with high CCL17 production. TNF blockade by etanercept or genetic ablation of Tnf in myeloid cells prevented the inflammatory imprinting of bone marrow-derived macrophages from HDM-allergic mice. CONCLUSION: Allergen-triggered inflammation drives a TNF-dependent innate memory, which may perpetuate and exacerbate chronic type 2 airway inflammation and thus represents a target for asthma therapy.


Assuntos
Asma , Hipersensibilidade , Animais , Dermatophagoides pteronyssinus , Modelos Animais de Doenças , Humanos , Inflamação , Macrófagos , Camundongos , Prostaglandinas E/metabolismo , Pyroglyphidae
12.
Semin Immunol ; 53: 101526, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-34802871

RESUMO

Macrophages are innate immune cells with essential roles in host defense, inflammation, immune regulation and repair. During infection with multicellular helminth parasites, macrophages contribute to pathogen trapping and killing as well as to tissue repair and the resolution of type 2 inflammation. Macrophages produce a broad repertoire of effector molecules, including enzymes, cytokines, chemokines and growth factors that govern anti-helminth immunity and repair of parasite-induced tissue damage. Helminth infection and the associated type 2 immune response induces an alternatively activated macrophage (AAM) phenotype that - beyond driving host defense - prevents aberrant Th2 cell activation and type 2 immunopathology. The immune regulatory potential of macrophages is exploited by helminth parasites that induce the production of anti-inflammatory mediators such as interleukin 10 or prostaglandin E2 to evade host immunity. Here, we summarize current insights into the mechanisms of macrophage-mediated host defense and repair during helminth infection and highlight recent progress on the immune regulatory crosstalk between macrophages and helminth parasites. We also point out important remaining questions such as the translation of findings from murine models to human settings of helminth infection as well as long-term consequences of helminth-induced macrophage reprogramming for subsequent host immunity.


Assuntos
Helmintos , Macrófagos , Animais , Quimiocinas , Citocinas , Helmintos/fisiologia , Humanos , Inflamação , Ativação de Macrófagos , Camundongos
13.
J Allergy Clin Immunol ; 147(2): 587-599, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32540397

RESUMO

BACKGROUND: Nonsteroidal anti-inflammatory drug-exacerbated respiratory disease (N-ERD) is a chronic inflammatory condition, which is driven by an aberrant arachidonic acid metabolism. Macrophages are major producers of arachidonic acid metabolites and subject to metabolic reprogramming, but they have been neglected in N-ERD. OBJECTIVE: This study sought to elucidate a potential metabolic and epigenetic macrophage reprogramming in N-ERD. METHODS: Transcriptional, metabolic, and lipid mediator profiles in macrophages from patients with N-ERD and healthy controls were assessed by RNA sequencing, Seahorse assays, and LC-MS/MS. Metabolites in nasal lining fluid, sputum, and plasma from patients with N-ERD (n = 15) and healthy individuals (n = 10) were quantified by targeted metabolomics analyses. Genome-wide methylomics were deployed to define epigenetic mechanisms of macrophage reprogramming in N-ERD. RESULTS: This study shows that N-ERD monocytes/macrophages exhibit an overall reduction in DNA methylation, aberrant metabolic profiles, and an increased expression of chemokines, indicative of a persistent proinflammatory activation. Differentially methylated regions in N-ERD macrophages included genes involved in chemokine signaling and acylcarnitine metabolism. Acylcarnitines were increased in macrophages, sputum, nasal lining fluid, and plasma of patients with N-ERD. On inflammatory challenge, N-ERD macrophages produced increased levels of acylcarnitines, proinflammatory arachidonic acid metabolites, cytokines, and chemokines as compared to healthy macrophages. CONCLUSIONS: Together, these findings decipher a proinflammatory metabolic and epigenetic reprogramming of macrophages in N-ERD.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Asma/imunologia , Macrófagos/imunologia , Pólipos Nasais/imunologia , Anti-Inflamatórios não Esteroides/imunologia , Asma/induzido quimicamente , Humanos , Memória Imunológica/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/metabolismo , Pólipos Nasais/induzido quimicamente
14.
Parasite Immunol ; 42(7): e12728, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32394439

RESUMO

Helminth infection represents a major health problem causing approximately 5 million disability-adjusted life years worldwide. Concerns that repeated anti-helminthic treatment may lead to drug resistance render it important that vaccines are developed but will require increased understanding of the immune-mediated cellular and antibody responses to helminth infection. IL-4 or antibody-activated murine macrophages are known to immobilize parasitic nematode larvae, but few studies have addressed whether this is translatable to human macrophages. In the current study, we investigated the capacity of human macrophages to recognize and attack larval stages of Ascaris suum, a natural porcine parasite that is genetically similar to the human helminth Ascaris lumbricoides. Human macrophages were able to adhere to and trap A suum larvae in the presence of either human or pig serum containing Ascaris-specific antibodies and other factors. Gene expression analysis of serum-activated macrophages revealed that CCL24, a potent eosinophil attractant, was the most upregulated gene following culture with A suum larvae in vitro, and human eosinophils displayed even greater ability to adhere to, and trap, A suum larvae. These data suggest that immune serum-activated macrophages can recruit eosinophils to the site of infection, where they act in concert to immobilize tissue-migrating Ascaris larvae.


Assuntos
Ascaríase/imunologia , Ascaris suum/imunologia , Quimiocina CCL24/metabolismo , Eosinófilos/imunologia , Macrófagos/imunologia , Animais , Anticorpos Anti-Helmínticos/sangue , Formação de Anticorpos , Ascaris lumbricoides/imunologia , Humanos , Soros Imunes/farmacologia , Larva/imunologia , Contagem de Leucócitos , Camundongos , Suínos , Doenças dos Suínos/imunologia , Vacinas/imunologia
15.
Allergy ; 74(6): 1090-1101, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30554425

RESUMO

BACKGROUND: Eicosanoid lipid mediators play key roles in type 2 immune responses, for example in allergy and asthma. Macrophages represent major producers of eicosanoids and they are key effector cells of type 2 immunity. We aimed to comprehensively track eicosanoid profiles during type 2 immune responses to house dust mite (HDM) or helminth infection and to identify mechanisms and functions of eicosanoid reprogramming in human macrophages. METHODS: We established an LC-MS/MS workflow for the quantification of 52 oxylipins to analyze mediator profiles in human monocyte-derived macrophages (MDM) stimulated with HDM and during allergic airway inflammation (AAI) or nematode infection in mice. Expression of eicosanoid enzymes was studied by qPCR and western blot and cytokine production was assessed by multiplex assays. RESULTS: Short (24 h) exposure of alveolar-like MDM (aMDM) to HDM suppressed 5-LOX expression and product formation, while triggering prostanoid (thromboxane and prostaglandin D2 and E2 ) production. This eicosanoid reprogramming was p38-dependent, but dectin-2-independent. HDM also induced proinflammatory cytokine production, but reduced granulocyte recruitment by aMDM. In contrast, high levels of cysteinyl leukotrienes (cysLTs) and 12-/15-LOX metabolites were produced in the airways during AAI or nematode infection in mice. CONCLUSION: Our findings show that a short exposure to allergens as well as ongoing type 2 immune responses are characterized by a fundamental reprogramming of the lipid mediator metabolism with macrophages representing particularly plastic responder cells. Targeting mediator reprogramming in airway macrophages may represent a viable approach to prevent pathogenic lipid mediator profiles in allergy or asthma.


Assuntos
Asma/imunologia , Eicosanoides/metabolismo , Macrófagos/imunologia , Pyroglyphidae/imunologia , Infecções por Strongylida/imunologia , Animais , Asma/parasitologia , Líquido da Lavagem Broncoalveolar/parasitologia , Células Cultivadas , Cromatografia Líquida , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Nippostrongylus/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Infecções por Strongylida/parasitologia , Espectrometria de Massas em Tandem
16.
Biol Chem ; 398(11): 1177-1191, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-28622139

RESUMO

Bioactive lipids regulate most physiological processes, from digestion to blood flow and from hemostasis to labor. Lipid mediators are also involved in multiple pathologies including cancer, autoimmunity or asthma. The pathological roles of lipid mediators are based on their intricate involvement in the immune system, which comprises source and target cells of these mediators. Based on their biosynthetic origin, bioactive lipids can be grouped into different classes [e.g. sphingolipids, formed from sphingosine or eicosanoids, formed from arachidonic acid (AA)]. Owing to the complexity of different mediator classes and the prominent immunological roles of eicosanoids, this review will focus solely on the immune-regulation of eicosanoids. Eicosanoids do not only control key immune responses (e.g. chemotaxis, antigen presentation, phagocytosis), but they are also subject to reciprocal control by the immune system. Particularly, key immunoregulatory cytokines such as IL-4 and IFN-γ shape the cellular eicosanoid profile, thus providing efficient feedback regulation between cytokine and eicosanoid networks. For the purpose of this review, I will first provide a short overview of the most important immunological functions of eicosanoids with a focus on prostaglandins (PGs) and leukotrienes (LTs). Second, I will summarize the current knowledge on immunological factors that regulate eicosanoid production during infection and inflammation.


Assuntos
Eicosanoides/imunologia , Animais , Humanos , Inflamação/imunologia , Prostaglandinas/imunologia
17.
Biofactors ; 43(3): 388-399, 2017 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-28139053

RESUMO

Ze339, an herbal extract from Petasites hybridus leaves is effective in treatment of allergic rhinitis by inhibition of a local production of IL-8 and eicosanoid LTB4 in allergen-challenged patients. However, the mechanism of action and anti-inflammatory potential in virally induced exacerbation of the upper airways is unknown. This study investigates the anti-inflammatory mechanisms of Ze339 on primary human nasal epithelial cells (HNECs) upon viral, bacterial and pro-inflammatory triggers. To investigate the influence of viral and bacterial infections on the airways, HNECs were stimulated with viral mimics, bacterial toll-like-receptor (TLR)-ligands or cytokines, in presence or absence of Ze339. The study uncovers Ze339 modulated changes in pro-inflammatory mediators and decreased neutrophil chemotaxis as well as a reduction of the nuclear translocation and phosphorylation of STAT molecules. Taken together, this study suggests that phyto drug Ze339 specifically targets STAT-signalling pathways in HNECs and has high potential as a broad anti-inflammatory drug that exceeds current indication. © 2016 BioFactors, 43(3):388-399, 2017.


Assuntos
Células Epiteliais/efeitos dos fármacos , Petasites/química , Extratos Vegetais/farmacologia , Fatores de Transcrição STAT/antagonistas & inibidores , Sesquiterpenos/farmacologia , Movimento Celular/efeitos dos fármacos , Quimiocinas/antagonistas & inibidores , Quimiocinas/biossíntese , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Flagelina/antagonistas & inibidores , Flagelina/farmacologia , Regulação da Expressão Gênica , Humanos , Interferon gama/antagonistas & inibidores , Interferon gama/farmacologia , Interleucina-4/antagonistas & inibidores , Interleucina-4/farmacologia , Lipopeptídeos/antagonistas & inibidores , Lipopeptídeos/farmacologia , Cavidade Nasal/citologia , Cavidade Nasal/efeitos dos fármacos , Cavidade Nasal/metabolismo , Neutrófilos/efeitos dos fármacos , Folhas de Planta/química , Poli I-C/antagonistas & inibidores , Poli I-C/farmacologia , Cultura Primária de Células , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
18.
J Allergy Clin Immunol ; 139(4): 1343-1354.e6, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27554815

RESUMO

BACKGROUND: Airway remodeling is a detrimental and refractory process showing age-dependent clinical manifestations that are mechanistically undefined. The leukotriene (LT) and wingless/integrase (Wnt) pathways have been implicated in remodeling, but age-specific expression profiles and common regulators remained elusive. OBJECTIVE: We sought to study the activation of the LT and Wnt pathways during early- or late-onset allergic airway inflammation and to address regulatory mechanisms and clinical relevance in normal human bronchial epithelial cells (NHBEs) and nasal polyp tissues. METHODS: Mice were sensitized with house dust mite (HDM) allergens from days 3, 15, or 60 after birth. Remodeling factors in murine bronchoalveolar lavage fluid, lung tissue, or human nasal polyp tissue were analyzed by means of Western blotting, immunoassays, or histology. Regulatory mechanisms were studied in cytokine/HDM-stimulated NHBEs and macrophages. RESULTS: Bronchoalveolar lavage fluid LT levels were increased in neonatal and adult but reduced in juvenile HDM-sensitized mice. Lungs of neonatally sensitized mice showed increased 5-lipoxygenase levels, whereas adult mice expressed more group 10 secretory phospholipase A2, Wnt5a, and transglutaminase 2 (Tgm2). Older mice showed colocalization of Wnt5a and LT enzymes in the epithelium, a pattern also observed in human nasal polyps. IL-4 promoted epithelial Wnt5a secretion, which upregulated macrophage Tgm2 expression, and Tgm2 inhibition in turn reduced LT release. Tgm2, group 10 secretory phospholipase A2, and LT enzymes in NHBEs and nasal polyps were refractory to corticosteroids. CONCLUSION: Our findings reveal age differences in LT and Wnt pathways during airway inflammation and identify a steroid-resistant cascade of Wnt5a, Tgm2, and LTs, which might represent a therapeutic target for airway inflammation and remodeling.


Assuntos
Envelhecimento/imunologia , Proteínas de Ligação ao GTP/imunologia , Leucotrienos/imunologia , Pneumonia/imunologia , Transglutaminases/imunologia , Proteína Wnt-5a/imunologia , Remodelação das Vias Aéreas/imunologia , Animais , Asma/imunologia , Western Blotting , Hiper-Reatividade Brônquica/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Pólipos Nasais/imunologia , Proteína 2 Glutamina gama-Glutamiltransferase
19.
PLoS Pathog ; 11(3): e1004778, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25806513

RESUMO

Helminth parasites can cause considerable damage when migrating through host tissues, thus making rapid tissue repair imperative to prevent bleeding and bacterial dissemination particularly during enteric infection. However, how protective type 2 responses targeted against these tissue-disruptive multicellular parasites might contribute to homeostatic wound healing in the intestine has remained unclear. Here, we observed that mice lacking antibodies (Aid-/-) or activating Fc receptors (Fcrg-/-) displayed impaired intestinal repair following infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb), whilst transfer of immune serum could partially restore chemokine production and rescue wound healing in Aid-/- mice. Impaired healing was associated with a reduced expression of CXCR2 ligands (CXCL2/3) by macrophages (MΦ) and myofibroblasts (MF) within intestinal lesions. Whilst antibodies and helminths together triggered CXCL2 production by MΦ in vitro via surface FcR engagement, chemokine secretion by intestinal MF was elicited by helminths directly via Fcrg-chain/dectin2 signaling. Blockade of CXCR2 during Hpb challenge infection reproduced the delayed wound repair observed in helminth infected Aid-/- and Fcrg-/- mice. Finally, conditioned media from human MΦ stimulated with infective larvae of the helminth Ascaris suum together with immune serum, promoted CXCR2-dependent scratch wound closure by human MF in vitro. Collectively our findings suggest that helminths and antibodies instruct a chemokine driven MΦ-MF crosstalk to promote intestinal repair, a capacity that may be harnessed in clinical settings of impaired wound healing.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Intestinos/imunologia , Macrófagos/imunologia , Miofibroblastos/imunologia , Nematospiroides dubius/imunologia , Receptores de Interleucina-8B/imunologia , Infecções por Strongylida/imunologia , Animais , Anticorpos Anti-Helmínticos/genética , Humanos , Intestinos/parasitologia , Intestinos/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Miofibroblastos/patologia , Receptores de Interleucina-8B/genética , Infecções por Strongylida/genética , Infecções por Strongylida/patologia
20.
J Immunol ; 194(3): 1154-63, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25548226

RESUMO

Infections with intestinal helminths severely impact on human and veterinary health, particularly through the damage that these large parasites inflict when migrating through host tissues. Host immunity often targets the motility of tissue-migrating helminth larvae, which ideally should be mimicked by anti-helminth vaccines. However, the mechanisms of larval trapping are still poorly defined. We have recently reported an important role for Abs in the rapid trapping of tissue-migrating larvae of the murine parasite Heligmosomoides polygyrus bakeri. Trapping was mediated by macrophages (MΦ) and involved complement, activating FcRs, and Arginase-1 (Arg1) activity. However, the receptors and Ab isotypes responsible for MΦ adherence and Arg1 induction remained unclear. Using an in vitro coculture assay of H. polygyrus bakeri larvae and bone marrow-derived MΦ, we now identify CD11b as the major complement receptor mediating MΦ adherence to the larval surface. However, larval immobilization was largely independent of CD11b and instead required the activating IgG receptor FcγRI (CD64) both in vitro and during challenge H. polygyrus bakeri infection in vivo. FcγRI signaling also contributed to the upregulation of MΦ Arg1 expression in vitro and in vivo. Finally, IgG2a/c was the major IgG subtype from early immune serum bound by FcγRI on the MΦ surface, and purified IgG2c could trigger larval immobilization and Arg1 expression in MΦ in vitro. Our findings reveal a novel role for IgG2a/c-FcγRI-driven MΦ activation in the efficient trapping of tissue-migrating helminth larvae and thus provide important mechanistic insights vital for anti-helminth vaccine development.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Antígeno CD11b/metabolismo , Helmintíase Animal/imunologia , Helmintíase Animal/metabolismo , Helmintos/imunologia , Receptores de IgG/metabolismo , Animais , Arginase/genética , Arginase/metabolismo , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Expressão Gênica , Helmintíase Animal/genética , Soros Imunes/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Interleucina-33 , Interleucinas/metabolismo , Larva , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Camundongos Knockout , Modelos Biológicos , Ligação Proteica , Receptores de Interleucina-4/genética , Receptores de Interleucina-4/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA