Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38946043

RESUMO

Radiation therapy (RT) is a common treatment for lung cancer. Still, it can lead to irreversible loss of pulmonary function and a significant reduction in quality of life for one-third of patients. Preexisting comorbidities, such as chronic obstructive pulmonary disease (COPD), are frequent in patients with lung cancer and further increase the risk of complications. Because lung stem cells are crucial for the regeneration of lung tissue following injury, we hypothesized that airway stem cells from patients with COPD with lung cancer might contribute to increased radiation sensitivity. We used the air-liquid interface model, a three-dimensional (3D) culture system, to compare the radiation response of primary human airway stem cells from healthy and patients with COPD. We found that COPD-derived airway stem cells, compared to healthy airway stem cell cultures, exhibited disproportionate pathological mucociliary differentiation, aberrant cell cycle checkpoints, residual DNA damage, reduced survival of stem cells and self-renewal, and terminally differentiated cells post-irradiation, which could be reversed by blocking the Notch pathway using small-molecule γ-secretase inhibitors. Our findings shed light on the mechanisms underlying the increased radiation sensitivity of COPD and suggest that airway stem cells reflect part of the pathological remodeling seen in lung tissue from patients with lung cancer receiving thoracic RT.

2.
Front Med (Lausanne) ; 9: 814123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35492343

RESUMO

Aortic aneurysms (AAs) are dilations of the aorta, that are often fatal upon rupture. Diagnostic radiological techniques such as ultrasound (US), magnetic resonance imaging (MRI), and computed tomography (CT) are currently used in clinical practice for early diagnosis as well as clinical follow-up for preemptive surgery of AA and prevention of rupture. However, the contemporary imaging-based risk prediction of aneurysm enlargement or life-threatening aneurysm-rupture remains limited as these are restricted to visual parameters which fail to provide a personalized risk assessment. Therefore, new insights into early diagnostic approaches to detect AA and therefore to prevent aneurysm-rupture are crucial. Multiple new techniques are developed to obtain a more accurate understanding of the biological processes and pathological alterations at a (micro)structural and molecular level of aortic degeneration. Advanced anatomical imaging combined with molecular imaging, such as molecular MRI, or positron emission tomography (PET)/CT provides novel diagnostic approaches for in vivo visualization of targeted biomarkers. This will aid in the understanding of aortic aneurysm disease pathogenesis and insight into the pathways involved, and will thus facilitate early diagnostic analysis of aneurysmal disease. In this study, we reviewed these molecular imaging modalities and their association with aneurysm growth and/or rupture risk and their limitations. Furthermore, we outline recent pre-clinical and clinical developments in molecular imaging of AA and provide future perspectives based on the advancements made within the field. Within the vastness of pre-clinical markers that have been studied in mice, molecular imaging targets such as elastin/collagen, albumin, matrix metalloproteinases and immune cells demonstrate promising results regarding rupture risk assessment within the pre-clinical setting. Subsequently, these markers hold potential as a future diagnosticum of clinical AA assessment. However currently, clinical translation of molecular imaging is still at the onset. Future human trials are required to assess the effectivity of potentially viable molecular markers with various imaging modalities for clinical rupture risk assessment.

3.
Front Genet ; 12: 738230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659358

RESUMO

The superior dose distribution of particle radiation compared to photon radiation makes it a promising therapy for the treatment of tumors. However, the cellular responses to particle therapy and especially the DNA damage response (DDR) is not well characterized. Compared to photons, particles are thought to induce more closely spaced DNA lesions instead of isolated lesions. How this different spatial configuration of the DNA damage directs DNA repair pathway usage, is subject of current investigations. In this review, we describe recent insights into induction of DNA damage by particle radiation and how this shapes DNA end processing and subsequent DNA repair mechanisms. Additionally, we give an overview of promising DDR targets to improve particle therapy.

4.
Cancer Res ; 81(24): 6171-6182, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34548335

RESUMO

The BRCA1 tumor suppressor gene encodes a multidomain protein for which several functions have been described. These include a key role in homologous recombination repair (HRR) of DNA double-strand breaks, which is shared with two other high-risk hereditary breast cancer suppressors, BRCA2 and PALB2. Although both BRCA1 and BRCA2 interact with PALB2, BRCA1 missense variants affecting its PALB2-interacting coiled-coil domain are considered variants of uncertain clinical significance (VUS). Using genetically engineered mice, we show here that a BRCA1 coiled-coil domain VUS, Brca1 p.L1363P, disrupts the interaction with PALB2 and leads to embryonic lethality. Brca1 p.L1363P led to a similar acceleration in the development of Trp53-deficient mammary tumors as Brca1 loss, but the tumors showed distinct histopathologic features, with more stable DNA copy number profiles in Brca1 p.L1363P tumors. Nevertheless, Brca1 p.L1363P mammary tumors were HRR incompetent and responsive to cisplatin and PARP inhibition. Overall, these results provide the first direct evidence that a BRCA1 missense variant outside of the RING and BRCT domains increases the risk of breast cancer. SIGNIFICANCE: These findings reveal the importance of a patient-derived BRCA1 coiled-coil domain sequence variant in embryonic development, mammary tumor suppression, and therapy response.See related commentary by Mishra et al., p. 6080.


Assuntos
Proteína BRCA1/fisiologia , Proteína do Grupo de Complementação N da Anemia de Fanconi/fisiologia , Regulação Neoplásica da Expressão Gênica , Recombinação Homóloga , Neoplasias Mamárias Animais/patologia , Reparo de DNA por Recombinação , Animais , Apoptose , Proteína BRCA2/fisiologia , Proliferação de Células , Feminino , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Knockout , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/fisiologia
5.
Nat Commun ; 12(1): 4605, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326328

RESUMO

BRCA2 and its interactors are required for meiotic homologous recombination (HR) and fertility. Loss of HSF2BP, a BRCA2 interactor, disrupts HR during spermatogenesis. We test the model postulating that HSF2BP localizes BRCA2 to meiotic HR sites, by solving the crystal structure of the BRCA2 fragment in complex with dimeric armadillo domain (ARM) of HSF2BP and disrupting this interaction in a mouse model. This reveals a repeated 23 amino acid motif in BRCA2, each binding the same conserved surface of one ARM domain. In the complex, two BRCA2 fragments hold together two ARM dimers, through a large interface responsible for the nanomolar affinity - the strongest interaction involving BRCA2 measured so far. Deleting exon 12, encoding the first repeat, from mBrca2 disrupts BRCA2 binding to HSF2BP, but does not phenocopy HSF2BP loss. Thus, results herein suggest that the high-affinity oligomerization-inducing BRCA2-HSF2BP interaction is not required for RAD51 and DMC1 recombinase localization in meiotic HR.


Assuntos
Proteína BRCA2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Espermatogênese/fisiologia , Animais , Proteína BRCA2/genética , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cristalografia por Raios X/métodos , Feminino , Recombinação Homóloga , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Meiose , Camundongos , Modelos Animais , Domínios e Motivos de Interação entre Proteínas , Deleção de Sequência
6.
Eur J Vasc Endovasc Surg ; 60(6): 905-915, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33032926

RESUMO

OBJECTIVE: Renal ischaemia reperfusion injury (IRI) is inevitable during open repair of pararenal aortic aneurysms. Pre-operative fasting potently increases resistance against IRI. The effect of fasting on IRI was examined in a hypomorphic Fibulin-4 mouse model (Fibulin-4+/R), which is predisposed to develop aortic aneurysms. METHODS: Wild type (WT) and Fibulin-4+/R mice were either fed ad libitum (AL) or fasted for two days before renal IRI induction by temporary clamping of the renal artery and vein of both kidneys. Six hours, 48 h, and seven days post-operatively, serum urea levels, renal histology, and mRNA expression levels of inflammatory and injury genes were determined to assess kidney function and damage. Additionally, matrix metalloproteinase activity in the kidney was assessed six months after IRI. RESULTS: Two days of fasting improved survival the first week after renal IRI in WT mice compared with AL fed mice. Short term AL fed Fibulin-4+/R mice showed improved survival and kidney function compared with AL fed WT mice, which could not be further enhanced by fasting. Both fasted WT and Fibulin-4+/R mice showed improved survival, kidney function and morphology compared with AL fed mice six months after renal IRI. Fibulin-4+/R kidneys of fasted mice showed reduced apoptosis together with increased matrix metalloprotease activity levels compared with AL fed Fibulin-4+/R mice, indicative of increased matrix remodelling. CONCLUSION: Fibulin-4+/R mice are naturally protected against the short-term, but not long-term, consequences of renal IRI. Pre-operative fasting protects against renal IRI and prevents (long-term) deterioration of kidney function and morphology in both WT and Fibulin-4+/R mice. These data suggest that pre-operative fasting may decrease renal damage in patients undergoing open abdominal aneurysm repair.


Assuntos
Aneurisma Aórtico/cirurgia , Jejum , Metaloproteinases da Matriz/metabolismo , Insuficiência Renal Crônica/prevenção & controle , Traumatismo por Reperfusão/complicações , Animais , Aneurisma Aórtico/genética , Apoptose , Peso Corporal , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/genética , Receptor Celular 1 do Vírus da Hepatite A/genética , Interleucina-6/genética , Rim/metabolismo , Rim/patologia , Rim/fisiopatologia , Masculino , Camundongos , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Período Pré-Operatório , RNA Mensageiro/metabolismo , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Taxa de Sobrevida , Fatores de Tempo , Ureia/sangue
7.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32917044

RESUMO

High-linear-energy-transfer (LET) radiation is more lethal than similar doses of low-LET radiation types, probably a result of the condensed energy deposition pattern of high-LET radiation. Here, we compare high-LET α-particle to low-LET X-ray irradiation and monitor double-strand break (DSB) processing. Live-cell microscopy was used to monitor DNA double-strand breaks (DSBs), marked by p53-binding protein 1 (53BP1). In addition, the accumulation of the endogenous 53BP1 and replication protein A (RPA) DSB processing proteins was analyzed by immunofluorescence. In contrast to α-particle-induced 53BP1 foci, X-ray-induced foci were resolved quickly and more dynamically as they showed an increase in 53BP1 protein accumulation and size. In addition, the number of individual 53BP1 and RPA foci was higher after X-ray irradiation, while focus intensity was higher after α-particle irradiation. Interestingly, 53BP1 foci induced by α-particles contained multiple RPA foci, suggesting multiple individual resection events, which was not observed after X-ray irradiation. We conclude that high-LET α-particles cause closely interspaced DSBs leading to high local concentrations of repair proteins. Our results point toward a change in DNA damage processing toward DNA end-resection and homologous recombination, possibly due to the depletion of soluble protein in the nucleoplasm. The combination of closely interspaced DSBs and perturbed DNA damage processing could be an explanation for the increased relative biological effectiveness (RBE) of high-LET α-particles compared to X-ray irradiation.


Assuntos
Partículas alfa , Quebras de DNA de Cadeia Dupla , Reparo do DNA/efeitos da radiação , Raios X , Linhagem Celular Tumoral , Humanos
8.
Nanotheranostics ; 4(1): 14-25, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31911891

RESUMO

Polymersomes have the potential to be applied in targeted alpha radionuclide therapy, while in addition preventing release of recoiling daughter isotopes. In this study, we investigated the cellular uptake, post uptake processing and intracellular localization of polymersomes. Methods: High-content microscopy was used to validate polymersome uptake kinetics. Confocal (live cell) microscopy was used to elucidate the uptake mechanism and DNA damage induction. Intracellular distribution of polymersomes in 3-D was determined using super-resolution microscopy. Results: We found that altering polymersome size and concentration affects the initial uptake and overall uptake capacity; uptake efficiency and eventual plateau levels varied between cell lines; and mitotic cells show increased uptake. Intracellular polymersomes were transported along microtubules in a fast and dynamic manner. Endocytic uptake of polymersomes was evidenced through co-localization with endocytic pathway components. Finally, we show the intracellular distribution of polymersomes in 3-D and DNA damage inducing capabilities of 213Bi labeled polymersomes. Conclusion: Polymersome size and concentration affect the uptake efficiency, which also varies for different cell types. In addition, we present advanced assays to investigate uptake characteristics in detail, a necessity for optimization of nano-carriers. Moreover, by elucidating the uptake mechanism, as well as uptake extent and geometrical distribution of radiolabeled polymersomes we provide insight on how to improve polymersome design.


Assuntos
Portadores de Fármacos , Membranas Artificiais , Polímeros , Radioisótopos , Animais , Bismuto/química , Bismuto/farmacocinética , Linhagem Celular , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Endocitose , Humanos , Camundongos , Microscopia Confocal , Nanopartículas/química , Nanopartículas/metabolismo , Compostos Orgânicos/química , Compostos Orgânicos/farmacocinética , Polímeros/química , Polímeros/farmacocinética , Radioisótopos/química , Radioisótopos/farmacocinética , Radioterapia
9.
PLoS Genet ; 16(1): e1008550, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31945059

RESUMO

Extrachromosomal DNA can integrate into the genome with no sequence specificity producing an insertional mutation. This process, which is referred to as random integration (RI), requires a double stranded break (DSB) in the genome. Inducing DSBs by various means, including ionizing radiation, increases the frequency of integration. Here we report that non-lethal physiologically relevant doses of ionizing radiation (10-100 mGy), within the range produced by medical imaging equipment, stimulate RI of transfected and viral episomal DNA in human and mouse cells with an extremely high efficiency. Genetic analysis of the stimulated RI (S-RI) revealed that it is distinct from the background RI, requires histone H2AX S139 phosphorylation (γH2AX) and is not reduced by DNA polymerase θ (Polq) inactivation. S-RI efficiency was unaffected by the main DSB repair pathway (homologous recombination and non-homologous end joining) disruptions, but double deficiency in MDC1 and 53BP1 phenocopies γH2AX inactivation. The robust responsiveness of S-RI to physiological amounts of DSBs can be exploited for extremely sensitive, macroscopic and direct detection of DSB-induced mutations, and warrants further exploration in vivo to determine if the phenomenon has implications for radiation risk assessment.


Assuntos
Histonas/metabolismo , Mutagênese Insercional/efeitos da radiação , Radiação Ionizante , Animais , Linhagem Celular , Células Cultivadas , Quebras de DNA de Cadeia Dupla , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Camundongos , Reparo de DNA por Recombinação , DNA Polimerase teta
10.
Methods Protoc ; 2(3)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466405

RESUMO

The use of alpha particles irradiation in clinical practice has gained interest in the past years, for example with the advance of radionuclide therapy. The lack of affordable and easily accessible irradiation systems to study the cell biological impact of alpha particles hampers broad investigation. Here we present a novel alpha particle irradiation set-up for uniform irradiation of cell cultures. By combining a small alpha emitting source and a computer-directed movement stage, we established a new alpha particle irradiation method allowing more advanced biological assays, including large-field local alpha particle irradiation and cell survival assays. In addition, this protocol uses cell culture on glass cover-slips which allows more advanced microscopy, such as super-resolution imaging, for in-depth analysis of the DNA damage caused by alpha particles. This novel irradiation set-up provides the possibility to perform reproducible, uniform and directed alpha particle irradiation to investigate the impact of alpha radiation on the cellular level.

11.
Cell Rep ; 27(13): 3790-3798.e7, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242413

RESUMO

The tumor suppressor BRCA2 is essential for homologous recombination (HR), replication fork stability, and DNA interstrand crosslink repair in vertebrates. We identify HSF2BP, a protein previously described as testis specific and not characterized functionally, as an interactor of BRCA2 in mouse embryonic stem cells, where the 2 proteins form a constitutive complex. HSF2BP is transcribed in all cultured human cancer cell lines tested and elevated in some tumor samples. Inactivation of the mouse Hsf2bp gene results in male infertility due to a severe HR defect during spermatogenesis. The BRCA2-HSF2BP interaction is highly evolutionarily conserved and maps to armadillo repeats in HSF2BP and a 68-amino acid region between the BRC repeats and the DNA binding domain of human BRCA2 (Gly2270-Thr2337) encoded by exons 12 and 13. This region of BRCA2 does not harbor known cancer-associated missense mutations and may be involved in the reproductive rather than the tumor-suppressing function of BRCA2.


Assuntos
Proteína BRCA2/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico/metabolismo , Espermatogênese , Animais , Proteína BRCA2/genética , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proteínas de Choque Térmico/genética , Humanos , Camundongos , Mutação de Sentido Incorreto , Domínios Proteicos
12.
Pharmaceutics ; 11(5)2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31137479

RESUMO

The use of nanoparticles as tumor-targeting agents is steadily increasing, and the influence of nanoparticle characteristics such as size and stealthiness have been established for a large number of nanocarrier systems. However, not much is known about the impact of tumor presence on nanocarrier circulation times. This paper reports on the influence of tumor presence on the in vivo circulation time and biodistribution of polybutadiene-polyethylene oxide (PBd-PEO) polymersomes. For this purpose, polymersomes were loaded with the gamma-emitter 111In and administered intravenously, followed by timed ex vivo biodistribution. A large reduction in circulation time was observed for tumor-bearing mice, with a circulation half-life of merely 5 min (R2 = 0.98) vs 117 min (R2 = 0.95) in healthy mice. To determine whether the rapid polymersome clearance observed in tumor-bearing mice was mediated by macrophages, chlodronate liposomes were administered to both healthy and tumor-bearing mice prior to the intravenous injection of radiolabeled polymersomes to deplete their macrophages. Pretreatment with chlodronate liposomes depleted macrophages in the spleen and liver and restored the circulation time of the polymersomes with no significant difference in circulation time between healthy mice and tumor-bearing mice pretreated with clodronate liposomes (15.2 ± 1.2% ID/g and 13.6 ± 2.7% ID/g, respectively, at 4 h p.i. with p = 0.3). This indicates that activation of macrophages due to tumor presence indeed affected polymersome clearance rate. Thus, next to particle design, the presence of a tumor can also greatly impact circulation times and should be taken into account when designing studies to evaluate the distribution of polymersomes.

13.
J Cachexia Sarcopenia Muscle ; 10(3): 662-686, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30916493

RESUMO

BACKGROUND: One of the principles underpinning our understanding of ageing is that DNA damage induces a stress response that shifts cellular resources from growth towards maintenance. A contrasting and seemingly irreconcilable view is that prompting growth of, for example, skeletal muscle confers systemic benefit. METHODS: To investigate the robustness of these axioms, we induced muscle growth in a murine progeroid model through the use of activin receptor IIB ligand trap that dampens myostatin/activin signalling. Progeric mice were then investigated for neurological and muscle function as well as cellular profiling of the muscle, kidney, liver, and bone. RESULTS: We show that muscle of Ercc1Δ/- progeroid mice undergoes severe wasting (decreases in hind limb muscle mass of 40-60% compared with normal mass), which is largely protected by attenuating myostatin/activin signalling using soluble activin receptor type IIB (sActRIIB) (increase of 30-62% compared with untreated progeric). sActRIIB-treated progeroid mice maintained muscle activity (distance travel per hour: 5.6 m in untreated mice vs. 13.7 m in treated) and increased specific force (19.3 mN/mg in untreated vs. 24.0 mN/mg in treated). sActRIIb treatment of progeroid mice also improved satellite cell function especially their ability to proliferate on their native substrate (2.5 cells per fibre in untreated progeroids vs. 5.4 in sActRIIB-treated progeroids after 72 h in culture). Besides direct protective effects on muscle, we show systemic improvements to other organs including the structure and function of the kidneys; there was a major decrease in the protein content in urine (albumin/creatinine of 4.9 sActRIIB treated vs. 15.7 in untreated), which is likely to be a result in the normalization of podocyte foot processes, which constitute the filtration apparatus (glomerular basement membrane thickness reduced from 224 to 177 nm following sActRIIB treatment). Treatment of the progeric mice with the activin ligand trap protected against the development of liver abnormalities including polyploidy (18.3% untreated vs. 8.1% treated) and osteoporosis (trabecular bone volume; 0.30 mm3 in treated progeroid mice vs. 0.14 mm3 in untreated mice, cortical bone volume; 0.30 mm3 in treated progeroid mice vs. 0.22 mm3 in untreated mice). The onset of neurological abnormalities was delayed (by ~5 weeks) and their severity reduced, overall sustaining health without affecting lifespan. CONCLUSIONS: This study questions the notion that tissue growth and maintaining tissue function during ageing are incompatible mechanisms. It highlights the need for future investigations to assess the potential of therapies based on myostatin/activin blockade to compress morbidity and promote healthy ageing.


Assuntos
Ativinas/antagonistas & inibidores , Envelhecimento/patologia , Músculo Esquelético/patologia , Transdução de Sinais/efeitos dos fármacos , Síndrome de Emaciação/prevenção & controle , Receptores de Activinas Tipo II/administração & dosagem , Receptores de Activinas Tipo II/genética , Ativinas/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Endonucleases/genética , Feminino , Humanos , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Transgênicos , Músculo Esquelético/efeitos dos fármacos , Miostatina/metabolismo , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Índice de Gravidade de Doença , Síndrome de Emaciação/diagnóstico , Síndrome de Emaciação/genética , Síndrome de Emaciação/patologia
14.
Chronobiol Int ; 36(5): 657-671, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30793958

RESUMO

Circadian rhythm disturbance (CRD) increases the risk of disease, e.g. metabolic syndrome, cardiovascular disease, and cancer. In the present study, we investigated later life adverse health effects triggered by repeated jet lag during gestation. Pregnant mice were subjected to a regular light-dark cycle (CTRL) or to a repeated delay (DEL) or advance (ADV) jet lag protocol. Both DEL and ADV offspring showed reduced weight gain. ADV offspring had an increased circadian period, and an altered response to a jet lag was observed in both DEL and ADV offspring. Analysis of the bones of adult male ADV offspring revealed reduced cortical bone mass and strength. Strikingly, analysis of the heart identified structural abnormalities and impaired heart function. Finally, DNA methylation analysis revealed hypermethylation of miR17-92 cluster and differential methylation within circadian clock genes, which correlated with altered gene expression. We show that developmental CRD affects the circadian system and predisposes to non-communicable disease in adult life.


Assuntos
Doenças Ósseas/etiologia , Ritmo Circadiano/fisiologia , Cardiopatias/etiologia , Síndrome do Jet Lag , Transtornos do Sono do Ritmo Circadiano/fisiopatologia , Animais , Relógios Circadianos/fisiologia , Modelos Animais de Doenças , Feminino , Genótipo , Síndrome do Jet Lag/fisiopatologia , Camundongos Endogâmicos C57BL , Fotoperíodo , Gravidez
15.
Int J Hyperthermia ; 34(6): 697-703, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28828891

RESUMO

In this work, a novel magnetic resonance (MR)-compatible microwave antenna was designed and validated in a small animal superficial hyperthermia applicator. The antenna operates at 2.45 GHz and matching is made robust against production and setup inaccuracies. To validate our theoretical concept, a prototype of the applicator was manufactured and tested for its properties concerning input reflection, sensitivity for setup inaccuracies, environment temperature stability and MR-compatibility. The experiments show that the applicator indeed fulfils the requirements for MR-guided hyperthermia investigation in small animals: it creates a small heating focus (<1 cm3), has a stable and reliable performance (S11< -15 dB) for all working conditions and is MR-compatible.


Assuntos
Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Camundongos
16.
J Pathol ; 243(3): 294-306, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28727149

RESUMO

Marfan syndrome (MFS) is a connective tissue disorder in which aortic rupture is the major cause of death. MFS patients with an aortic diameter below the advised limit for prophylactic surgery (<5 cm) may unexpectedly experience an aortic dissection or rupture, despite yearly monitoring. Hence, there is a clear need for improved prognostic markers to predict such aortic events. We hypothesize that elastin fragments play a causal role in aortic calcification in MFS, and that microcalcification serves as a marker for aortic disease severity. To address this hypothesis, we analysed MFS patient and mouse aortas. MFS patient aortic tissue showed enhanced microcalcification in areas with extensive elastic lamina fragmentation in the media. A causal relationship between medial injury and microcalcification was revealed by studies in vascular smooth muscle cells (SMCs); elastin peptides were shown to increase the activity of the calcification marker alkaline phosphatase (ALP) and reduce the expression of the calcification inhibitor matrix GLA protein in human SMCs. In murine Fbn1C1039G/+ MFS aortic SMCs, Alpl mRNA and activity were upregulated as compared with wild-type SMCs. The elastin peptide-induced ALP activity was prevented by incubation with lactose or a neuraminidase inhibitor, which inhibit the elastin receptor complex, and a mitogen-activated protein kinase kinase-1/2 inhibitor, indicating downstream involvement of extracellular signal-regulated kinase-1/2 (ERK1/2) phosphorylation. Histological analyses in MFS mice revealed macrocalcification in the aortic root, whereas the ascending aorta contained microcalcification, as identified with the near-infrared fluorescent bisphosphonate probe OsteoSense-800. Significantly, microcalcification correlated strongly with aortic diameter, distensibility, elastin breaks, and phosphorylated ERK1/2. In conclusion, microcalcification co-localizes with aortic elastin degradation in MFS aortas of humans and mice, where elastin-derived peptides induce a calcification process in SMCs via the elastin receptor complex and ERK1/2 activation. We propose microcalcification as a novel imaging marker to monitor local elastin degradation and thus predict aortic events in MFS patients. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Elastina/metabolismo , Síndrome de Marfan/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Aorta/metabolismo , Aneurisma Aórtico/metabolismo , Aneurisma Aórtico/patologia , Calcinose/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Síndrome de Marfan/patologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia
17.
Cell ; 169(1): 132-147.e16, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340339

RESUMO

The accumulation of irreparable cellular damage restricts healthspan after acute stress or natural aging. Senescent cells are thought to impair tissue function, and their genetic clearance can delay features of aging. Identifying how senescent cells avoid apoptosis allows for the prospective design of anti-senescence compounds to address whether homeostasis can also be restored. Here, we identify FOXO4 as a pivot in senescent cell viability. We designed a FOXO4 peptide that perturbs the FOXO4 interaction with p53. In senescent cells, this selectively causes p53 nuclear exclusion and cell-intrinsic apoptosis. Under conditions where it was well tolerated in vivo, this FOXO4 peptide neutralized doxorubicin-induced chemotoxicity. Moreover, it restored fitness, fur density, and renal function in both fast aging XpdTTD/TTD and naturally aged mice. Thus, therapeutic targeting of senescent cells is feasible under conditions where loss of health has already occurred, and in doing so tissue homeostasis can effectively be restored.


Assuntos
Envelhecimento/patologia , Antibióticos Antineoplásicos/efeitos adversos , Peptídeos Penetradores de Células/farmacologia , Doxorrubicina/efeitos adversos , Envelhecimento/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacologia , Apoptose , Proteínas de Ciclo Celular , Linhagem Celular , Sobrevivência Celular , Senescência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Feminino , Fibroblastos/citologia , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/metabolismo , Humanos , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Rim/efeitos dos fármacos , Rim/fisiologia , Fígado/efeitos dos fármacos , Fígado/fisiologia , Masculino , Camundongos , Síndromes de Tricotiodistrofia/tratamento farmacológico , Proteína Supressora de Tumor p53/metabolismo
18.
J Nucl Med ; 57(8): 1289-95, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27127222

RESUMO

UNLABELLED: In the treatment of neuroendocrine tumors (NETs), complete surgical removal of malignancy is generally desirable, because it offers curative results. Preoperative guidance with radiolabeled somatostatin analogs, commonly used for NET diagnosis and preoperative planning, is limited by its low resolution, with the risk that tumor margins and small metastases will be incompletely resected with subsequent recurrence. A single hybrid probe combining radiotracer and optical dye would enable high-resolution optical guidance, also during surgery. In the current study, the hybrid labeled somatostatin analog Cy5-DTPA-Tyr(3)-octreotate (DTPA is diethylene triamine pentaacetic acid) was synthesized and evaluated for its ability to specifically trace NET cells in vitro and in an animal model. The performance of the hybrid tracer was compared with that of octreotate with only radiolabel or only optical label. METHODS: The binding affinity and internalization capacity of Cy5-DTPA-Tyr(3)-octreotate were assessed in vitro. Biodistribution profiles and both nuclear and optical in vivo imaging of Cy5-(111)In -DTPA-Tyr(3)-octreotate were performed in NET-bearing mice and compared with the performance of (111)In-DTPA-Tyr(3)-octreotate. RESULTS: In vitro studies showed a low receptor affinity and internalization rate for Cy5-DTPA-Tyr(3)-octreotate. The dissociation constant value was 387.7 ± 97.9 nM for Cy5-DTPA-Tyr(3)-octreotate, whereas it was 120.5 ± 18.1 nM for DTPA-Tyr(3)-octreotate. Similarly, receptor-mediated internalization reduced from 33.76% ± 1.22% applied dose for DTPA-Tyr(3)-octreotate to 1.32% ± 0.02% applied dose for Cy5-DTPA-Tyr(3)-octreotate. In contrast, in vivo and ex vivo studies revealed similar tumor uptake values of Cy5-(111)In-DTPA-Tyr(3)-octreotate and (111)In -DTPA-Tyr(3)-octreotate (6.93 ± 2.08 and 5.16 ± 1.27, respectively). All organs except the kidneys showed low background radioactivity, with especially low activities in the liver, and high tumor-to-tissue ratios were achieved-both favorable for the tracer's toxicity profile. Hybrid imaging in mice confirmed that the nuclear and fluorescence signals colocalized. CONCLUSION: The correlation between findings with the optical and the nuclear probes underlines the potential of combining SPECT imaging with fluorescence guidance and shows the promise of this novel hybrid peptide for preoperative and intraoperative imaging of NET.


Assuntos
Corantes Fluorescentes/farmacocinética , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Somatostatina/análogos & derivados , Animais , Linhagem Celular Tumoral , Humanos , Marcação por Isótopo/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência/métodos , Especificidade de Órgãos , Compostos Radiofarmacêuticos/síntese química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
19.
J Hypertens ; 34(4): 654-65, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26828783

RESUMO

AIMS: Increasing evidence supports a role for the angiotensin II-AT1-receptor axis in aneurysm development. Here, we studied whether counteracting this axis via stimulation of AT2 receptors is beneficial. Such stimulation occurs naturally during AT1-receptor blockade with losartan, but not during renin inhibition with aliskiren. METHODS AND RESULTS: Aneurysmal homozygous fibulin-4 mice, displaying a four-fold reduced fibulin-4 expression, were treated with placebo, losartan, aliskiren, or the ß-blocker propranolol from day 35 to 100. Their phenotype includes cystic media degeneration, aortic regurgitation, left ventricular dilation, reduced ejection fraction, and fractional shortening. Although losartan and aliskiren reduced hemodynamic stress and increased renin similarly, only losartan increased survival. Propranolol had no effect. No drug rescued elastic fiber fragmentation in established aneurysms, although losartan did reduce aneurysm size. Losartan also increased ejection fraction, decreased LV diameter, and reduced cardiac pSmad2 signaling. None of these effects were seen with aliskiren or propranolol. Longitudinal micro-CT measurements, a novel method in which each mouse serves as its own control, revealed that losartan reduced LV growth more than aneurysm growth, presumably because the heart profits both from the local (cardiac) effects of losartan and its effects on aortic root remodeling. CONCLUSION: Losartan, but not aliskiren or propranolol, improved survival in fibulin-4 mice. This most likely relates to its capacity to improve structure and function of both aorta and heart. The absence of this effect during aliskiren treatment, despite a similar degree of blood pressure reduction and renin-angiotensin system blockade, suggests that it might be because of AT2-receptor stimulation.


Assuntos
Aneurisma/fisiopatologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/metabolismo , Proteínas da Matriz Extracelular , Insuficiência Cardíaca/fisiopatologia , Receptor Tipo 1 de Angiotensina/metabolismo , Renina/metabolismo , Animais , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Camundongos , Camundongos Transgênicos , Renina/antagonistas & inibidores
20.
Mol Imaging Biol ; 17(5): 633-42, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25724406

RESUMO

PURPOSE: Hyperbaric oxygen therapy (HBOT) is used in the treatment of radiation-induced tissue injury but its effect on (residual) tumor tissue is indistinct and therefore investigated in this study. PROCEDURES: Orthotopic FaDu tumors were established in mice, and the response of the (irradiated) tumors to HBOT was monitored by bioluminescence imaging. Near infrared fluorescence imaging using AngioSense750 and Hypoxisense680 was applied to detect tumor vascular permeability and hypoxia. RESULTS: HBOT treatment resulted in accelerated growth of non-irradiated tumors, but mouse survival was improved. Tumor vascular leakiness and hypoxia were enhanced after HBOT, whereas histological characteristics, epithelial-to-mesenchymal transition markers, and metastatic incidence were not influenced. CONCLUSIONS: Squamous cell carcinoma responds to HBOT with respect to tumor growth, vascular permeability, and hypoxia, which may have implications for its use in cancer patients. The ability to longitudinally analyze tumor characteristics highlights the versatility and potential of optical imaging methods in oncological research.


Assuntos
Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/terapia , Oxigenoterapia Hiperbárica , Imagem Óptica/métodos , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Oxigênio/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA