Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 19(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670308

RESUMO

To tackle the growing problem of antibiotic resistance, it is essential to identify new bioactive compounds that are effective against resistant microbes and safe to use. Natural products and their derivatives are, and will continue to be, an important source of these molecules. Sea sponges harbour a diverse microbiome that co-exists with the sponge, and these bacterial communities produce a rich array of bioactive metabolites for protection and resource competition. For these reasons, the sponge microbiota constitutes a potential source of clinically relevant natural products. To date, efforts in bioprospecting for these compounds have focused predominantly on sponge specimens isolated from shallow water, with much still to be learned about samples from the deep sea. Here we report the isolation of a new Micromonospora strain, designated 28ISP2-46T, recovered from the microbiome of a mid-Atlantic deep-sea sponge. Whole-genome sequencing reveals the capacity of this bacterium to produce a diverse array of natural products, including kosinostatin and isoquinocycline B, which exhibit both antibiotic and antitumour properties. Both compounds were isolated from 28ISP2-46T fermentation broths and were found to be effective against a plethora of multidrug-resistant clinical isolates. This study suggests that the marine production of isoquinocyclines may be more widespread than previously supposed and demonstrates the value of targeting the deep-sea sponge microbiome as a source of novel microbial life with exploitable biosynthetic potential.


Assuntos
Antibacterianos/isolamento & purificação , Microbiota , Micromonospora/isolamento & purificação , Poríferos/microbiologia , Animais , Antibacterianos/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Oceano Atlântico , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Sequenciamento Completo do Genoma
2.
FEMS Immunol Med Microbiol ; 62(3): 348-61, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21569124

RESUMO

Francisella tularensis is an intracellular pathogen and is able to invade several different cell types, in particular macrophages, most commonly through phagocytosis. A flow cytometric assay was developed to measure bacterial uptake, using a fluorescein isothiocyanate-labelled anti-F. tularensis lipopolysaccharide antibody in conjunction with antibodies to cell surface markers, in order to determine the specific cell phenotypes that were positive for the bacteria. Several phagocytic inhibitors were evaluated in macrophage cell lines and a lung homogenate assay to determine whether the uptake of F. tularensis strain LVS could be altered. Our data show that cytochalasin B, LY294002, wortmannin, nocodazole, MG132 and XVA143 inhibitors reduced LVS uptake by >50% in these assays without having significant cytotoxic effects. Furthermore, a reduction in the inflammatory cytokines monocyte chemoattractant protein-1, interleukin-6 and tumour necrosis factor-α was found in the supernatant of lung tissue infected with LVS when the inhibitory compounds were present. Similarly, there was an alteration in bacterial uptake and a reduction in the inflammatory cytokine response following the administration of wortmannin to LVS-infected mice. Although wortmannin treatment alone did not correlate with the enhanced survival of LVS-infected mice, these inhibitors may have utility in combination therapeutic approaches or against other intracellular pathogens that use phagocytic mechanisms to enter their optimal niche.


Assuntos
Francisella tularensis/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Tularemia/imunologia , Animais , Antibacterianos/farmacologia , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Francisella tularensis/efeitos dos fármacos , Francisella tularensis/patogenicidade , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Estatísticas não Paramétricas , Tularemia/tratamento farmacológico , Tularemia/microbiologia
3.
Infect Immun ; 73(2): 1260-4, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15664977

RESUMO

The Burkholderia pseudomallei K96243 genome contains multiple type IV pilin-associated loci, including one encoding a putative pilus structural protein (pilA). A pilA deletion mutant has reduced adherence to human epithelial cells and is less virulent in the nematode model of virulence and the murine model of melioidosis, suggesting a role for type IV pili in B. pseudomallei virulence.


Assuntos
Aderência Bacteriana/fisiologia , Burkholderia pseudomallei/metabolismo , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Animais , Aderência Bacteriana/genética , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/patogenicidade , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Fímbrias Bacterianas/genética , Humanos , Camundongos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA