Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Meat Sci ; 211: 109451, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38350244

RESUMO

Several plant-based materials are discarded by the food industry due to oversupply, lack of transport, and inappropriate storage. These materials contain valuable essential micronutrients such as minerals, vitamins and bioactive components (e.g., polyphenol, tocopherols, ascorbic acid, carotenoids) with antioxidant, antimicrobial, and anti-inflammatory effects, among others. In the context of making our agriculture-food based economy more circular and sustainable, and to develop foods with clean labels and less E-numbers, fruits, vegetables, yams, cereal distillers, oilseeds and other plant by-products could be utilised and upcycled back into new food formulations. Meat products are a particularly suitable matrix for this purpose, due to their susceptibility to lipid and protein oxidation and microbial spoilage (which shorten their shelf life). This review brings together the latest (2020-23) reformulation efforts, preservative methods and other innovative pathways, including studies on by-products as plant-based additives and bio-actives. It will cover the use of plant-based by-products as natural additives into production of processed meat products such as burgers, fermented meats and sausages, produced from ruminant and monogastric animals (except poultry). The extraction methods, inclusion levels, processing methods used and the quality of the resulting meat products will be reported, including preservative effects (microbial growth, oxidative stability and shelf life) and effects on instrumental, nutritional and sensory quality. Furthermore, it will also critically discuss the gaps identified, recommendation of the most promising ingredients for quality enhancement, and provide directions for future research.


Assuntos
Produtos da Carne , Animais , Produtos da Carne/análise , Antioxidantes , Carne , Oxirredução , Ácido Ascórbico
2.
J Sci Food Agric ; 104(3): 1833-1842, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37884474

RESUMO

BACKGROUND: The large quantities of by-products generated in the coffee industry are a problem. Studies related to the biological potential of organic coffee husks are still limited. The aim of this work was to investigate the occurrence of phenolic compounds in organic coffee husks and to evaluate their potential as a source of bioactive dietary components. RESULTS: To achieve this objective, three extracts were prepared, namely extractable polyphenols (EPs), hydrolyzable non-extractable polyphenols (H-NEPs), and non-extractable polyphenols (NEPs). These extracts were characterized and evaluated for their bioactive properties after simulated gastrointestinal digestion. The results show that the extraction process affected the occurrence of phenols from coffee peels, especially for caffeic acid, gallic acid, and chlorogenic acid. The free and bound polyphenols found in the extracts and digests not only showed antioxidant properties against 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals but were also strongly bioavailable and had good anticoagulant potential. CONCLUSION: These results highlight the potential health benefits of phytochemicals from coffee husks and open new perspectives for the use of such compounds in dietary supplements. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Antioxidantes , Coffea , Antioxidantes/química , Coffea/metabolismo , Fenóis/química , Polifenóis , Digestão , Extratos Vegetais/química
3.
Crit Rev Food Sci Nutr ; : 1-27, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37335106

RESUMO

Gut microbiota (GM) is an invisible organ that plays an important role in human health. Increasing evidence suggests that polyphenols in pomegranate (punicalagin, PU) could serve as prebiotics to modulate the composition and function of GM. In turn, GM transform PU into bioactive metabolites such as ellagic acid (EA) and urolithin (Uro). In this review, the interplay between pomegranate and GM is thoroughly described by unveiling a dialog in which both actors seem to affect each other's roles. In a first dialog, the influence of bioactive compounds from pomegranate on GM is described. The second act shows how the GM biotransform pomegranate phenolics into Uro. Finally, the health benefits of Uro and that related molecular mechanism are summarized and discussed. Intake of pomegranate promotes beneficial bacteria in GM (e.g. Lactobacillus spp., Bifidobacterium spp.) while reducing the growth of harmful bacteria (e.g. Bacteroides fragilis group, Clostridia). Akkermansia muciniphila, and Gordonibacter spp., among others, biotransform PU and EA into Uro. Uro contributes to strengthening intestinal barrier and reducing inflammatory processes. Yet, Uro production varies greatly among individuals and depend on GM composition. Uro-producing bacteria and precise metabolic pathways need to be further elucidated therefore contributing to personalized and precision nutrition.


Gut microbiota plays a critical role in maintaining host health.Pomegranate is rich in bioactive components.Consumption of pomegranate positively modulates gut microbiota.Gut microbiota can transform ellagitannins in pomegranate into urolithin.Urolithin has high bioavailability and multiple health benefits.

4.
Biochim Biophys Acta Proteins Proteom ; 1870(7): 140797, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35691541

RESUMO

Protein oxidation and oxidative stress are involved in a variety of health disorders such as colorectal adenomas, inflammatory bowel's disease, neurological disorders and aging, among others. In particular, the specific final oxidation product from lysine, the α-amino adipic acid (α-AA), has been found in processed meat products and emphasized as a reliable marker of type II diabetes and obesity. Currently, the underlying mechanisms of the biological impairments caused by α-AA are unknown. To elucidate the molecular basis of the toxicological effect of α-AA, differentiated human enterocytes were exposed to dietary concentrations of α-AA (200 µM) and analyzed by flow cytometry, protein oxidation and proteomics using a Nanoliquid Chromatography-Orbitrap MS/MS. Cell viability was significantly affected by α-AA (p < 0.05). The proteomic study revealed that α-AA was able to alter cell homeostasis through impairment of the Na+/K+-ATPase pump, energetic metabolism, and antioxidant response, among other biological processes. These results show the importance of dietary oxidized amino acids in intestinal cell physiology and open the door to further studies to reveal the impact of protein oxidation products in pathological conditions.


Assuntos
Diabetes Mellitus Tipo 2 , Proteoma , Biomarcadores , Diabetes Mellitus Tipo 2/metabolismo , Enterócitos/metabolismo , Humanos , Proteoma/metabolismo , Proteômica , Espectrometria de Massas em Tandem
5.
Antioxidants (Basel) ; 10(4)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33918063

RESUMO

Pancreatic stellate cells (PSC) play a major role in the formation of fibrotic tissue in pancreatic tumors. On its side, melatonin is a putative therapeutic agent for pancreatic cancer and inflammation. In this work, the actions of melatonin on PSC subjected to hypoxia were evaluated. Reactive oxygen species (ROS) generation reduced (GSH) and oxidized (GSSG) levels of glutathione, and protein and lipid oxidation were analyzed. The phosphorylation of nuclear factor erythroid 2-related factor (Nrf2), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), and the regulatory protein nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-alpha (IκBα) was studied. The expression of Nrf2-regulated antioxidant enzymes, superoxide dismutase (SOD) enzymes, cyclooxygenase 2 (COX-2), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were also studied. Total antioxidant capacity (TAC) was assayed. Finally, cell viability was studied. Under hypoxia and in the presence of melatonin generation of ROS was observed. No increases in the oxidation of proteins or lipids were detected. The phosphorylation of Nrf2 and the expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1, heme oxygenase-1, SOD1, and of SOD2 were augmented. The TAC was increased. Protein kinase C was involved in the effects of melatonin. Melatonin decreased the GSH/GSSG ratio at the highest concentration tested. Cell viability dropped in the presence of melatonin. Finally, melatonin diminished the phosphorylation of NF-kB and the expression of COX-2, IL-6, and TNF-α. Our results indicate that melatonin, at pharmacological concentrations, modulates the red-ox state, viability, and the expression of proinflammatory mediators in PSC subjected to hypoxia.

6.
J Sci Food Agric ; 101(4): 1364-1371, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32833312

RESUMO

BACKGROUND: This study aimed to investigate the molecular mechanisms involved in the onset of the white striping (WS) myopathy with particular attention to the role of oxidative stress and protein oxidation in the loss of meat quality. RESULTS: It was found that WS-M (moderate degree; white stripes <1 mm thickness) and WS-S (severe degree; white stripes >1 mm thickness) breast presented higher pH, hardness, redness, lipid, and collagen content, and lower lightness than normal breast. Compared with the latter, WS-S had a more severe loss of protein thiols (70.7% less thiols than in N), reduced activity of antioxidant enzymes such as catalase (23 versus 40 U g-1 ), glutathione peroxidase (0.21 versus 0.54 U g-1 ), and superoxide dismutase (56 versus 73 U g-1 ), and consequently, had greater accretion of thiobarbituric acid reactive substances (0.64 versus 0.22 mg MDAkg-1 muscle), allysine (3.1 versus 1.9 nmol mg-1 protein) and Schiff base structures (645 versus 258 fluorescent units). The analysis of sarcoplasmic proteins revealed that muscles severely affected by the myopathy suffered a chronic impairment of physiological (upregulation of sarcoplasmic reticulum Ca2+ ATPase, sarcalumenin and calsequestrin-2) and metabolic processes (downregulation of pyruvate kinase, creatine kinase, and l-lactate dehydrogenase). CONCLUSION: The overexpression of ribonuclease / angiogenin inhibitor 1 and Kelch-like proteins in WS chicken breasts indicates altered protein turnover plausibly mediated by oxidative stress and accumulation of oxidized proteins. © 2020 Society of Chemical Industry.


Assuntos
Antioxidantes/metabolismo , Proteínas Aviárias/metabolismo , Doenças Musculares/veterinária , Estresse Oxidativo , Doenças das Aves Domésticas/metabolismo , Animais , Galinhas , Carne/análise , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Oxirredução , Proteostase
7.
Food Chem Toxicol ; 144: 111650, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32745570

RESUMO

The harmful effects of food-occurring oxidized amino acids, namely, aminoadipic acid (AAA), dityrosine (DTYR), L-kynurenine (KN), kynurenic acid (KA) and 3-nitrotyrosine (3NT), were studied on differentiated CACO-2 cells by flow cytometry and quantification of glutathione (GSH), and allysine. Cells were exposed to food-relevant doses (200 µM) of each compound for 4 or 72h and compared to a control (no stimulated cells). All oxidized amino acids induced apoptosis and results indicated that underlying mechanisms depended on the chemical nature of the species. AAA, KN and KA caused ROS generation and severe oxidative stress in 96%, 98% and 89% of exposed cells (77% in control cells), leading to significant GSH depletion and allysine accretion (1.5, 1.5 and 1.6 nmol allysine/mg protein, respectively at 4h; control: 0.22 nmol/mg protein; p < 0.05). DTYR and 3NT induced significant apoptosis to 29% and 25% of cells (control: 16%; p < 0.05) and necrosis to 28% and 26% of cells (control: 23%) at 72h by ROS-independent mechanisms. KN and KA were found to induce a cycle arrest effect on CACO-2 cells. These findings emphasize the potential harmful effects of the intake of oxidized proteins and amino acids and urge the necessity of carrying out further molecular studies.


Assuntos
Aminoácidos/toxicidade , Diferenciação Celular , Alimentos , Apoptose/efeitos dos fármacos , Células CACO-2 , Glutationa/metabolismo , Humanos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
8.
Biol Cell ; 112(10): 280-299, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32632968

RESUMO

BACKGROUND INFORMATION: Pancreatic stellate cells play a key role in the fibrosis that develops in diseases such as pancreatic cancer. In the growing tumour, a hypoxia condition develops under which cancer cells are able to proliferate. The growth of fibrotic tissue contributes to hypoxia. In this study, the effect of hypoxia (1% O2 ) on pancreatic stellate cells physiology was investigated. Changes in intracellular free-Ca2+ concentration, mitochondrial free-Ca2+ concentration and mitochondrial membrane potential were studied by fluorescence techniques. The status of enzymes responsible for the cellular oxidative state was analyzed by quantitative reverse transcription-polymerase chain reaction, high-performance liquid chromatography, spectrophotometric and fluorimetric methods and by Western blotting analysis. Cell viability and proliferation were studied by crystal violet test, 5-bromo-2-deoxyuridine cell proliferation test and Western blotting analysis. Finally, cell migration was studied employing the wound healing assay. RESULTS: Hypoxia induced an increase in intracellular and mitochondrial free-Ca2+ concentration, whereas mitochondrial membrane potential was decreased. An increase in mitochondrial reactive oxygen species production was observed. Additionally, an increase in the oxidation of proteins and lipids was detected. Moreover, cellular total antioxidant capacity was decreased. Increases in the expression of superoxide dismutase 1 and 2 were observed and superoxide dismutase activity was augmented. Hypoxia evoked a decrease in the oxidized/reduced glutathione ratio. An increase in the phosphorylation of nuclear factor erythroid 2-related factor and in expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1 and heme oxygenase-1 were detected. The expression of cyclin A was decreased, whereas expression of cyclin D and the content of 5-bromo-2-deoxyuridine were increased. This was accompanied by an increase in cell viability. The phosphorylation state of c-Jun NH2 -terminal kinase was increased, whereas that of p44/42 and p38 was decreased. Finally, cells subjected to hypoxia maintained migration ability. CONCLUSIONS AND SIGNIFICANCE: Hypoxia creates pro-oxidant conditions in pancreatic stellate cells to which cells adapt and leads to increased viability and proliferation.


Assuntos
Hipóxia Celular , Estresse Oxidativo , Células Estreladas do Pâncreas , Animais , Cálcio/metabolismo , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Células Estreladas do Pâncreas/citologia , Células Estreladas do Pâncreas/metabolismo , Ratos , Ratos Wistar
9.
Molecules ; 25(7)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272799

RESUMO

The production of bioactive peptides from organic by-waste materials is in line with current trends devoted to guaranteeing environmental protection and a circular economy. The objectives of this study were i) to optimize the conditions for obtaining bioactive hydrolysates from chicken combs and wattles using Alcalase, ii) to identify the resulting peptides using LC-ESI-MS2 and iii) to evaluate their chelating and antioxidant activities. The hydrolysate obtained using a ratio of enzyme to substrate of 5% (w/w) and 240 min of hydrolysis showed excellent Fe2+ chelating and antioxidant capacities, reducing Fe3+ and inhibiting 2, 2'-Azino-bis(3-ethylbenz-thiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. The mapping of ion distribution showed that a high degree of hydrolysis led to the production of peptides with m/z ≤ 400, suggesting low mass peptides or peptides with multiple charge precursor ions. The peptides derived from the proteins of cartilage like Collagen alpha-2(I), Collagen alpha-1(I), Collagen alpha-1(III) and elastin contributed to generation of bioactive compounds. Hydrolysates from chicken waste materials could be regarded as candidates to be used as ingredients to design processed foods with functional properties.


Assuntos
Crista e Barbelas/efeitos dos fármacos , Crista e Barbelas/metabolismo , Hidrólise/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Antioxidantes/farmacologia , Benzotiazóis/farmacologia , Compostos de Bifenilo/farmacologia , Galinhas , Cromatografia Líquida/métodos , Colágeno/metabolismo , Elastina/metabolismo , Espectrometria de Massas/métodos , Picratos/farmacologia , Hidrolisados de Proteína/metabolismo , Subtilisinas/metabolismo , Ácidos Sulfônicos/farmacologia
10.
Sci Rep ; 10(1): 6352, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286500

RESUMO

In this work we have studied the effects of pharmacological concentrations of melatonin (1 µM-1 mM) on pancreatic stellate cells (PSC). Cell viability was analyzed by AlamarBlue test. Production of reactive oxygen species (ROS) was monitored following CM-H2DCFDA and MitoSOX Red-derived fluorescence. Total protein carbonyls and lipid peroxidation were analyzed by HPLC and spectrophotometric methods respectively. Mitochondrial membrane potential (ψm) was monitored by TMRM-derived fluorescence. Reduced (GSH) and oxidized (GSSG) levels of glutathione were determined by fluorescence techniques. Quantitative reverse transcription-polymerase chain reaction was employed to detect the expression of Nrf2-regulated antioxidant enzymes. Determination of SOD activity and total antioxidant capacity (TAC) were carried out by colorimetric methods, whereas expression of SOD was analyzed by Western blotting and RT-qPCR. The results show that melatonin decreased PSC viability in a concentration-dependent manner. Melatonin evoked a concentration-dependent increase in ROS production in the mitochondria and in the cytosol. Oxidation of proteins was detected in the presence of melatonin, whereas lipids oxidation was not observed. Depolarization of ψm was noted with 1 mM melatonin. A decrease in the GSH/GSSG ratio was observed, that depended on the concentration of melatonin used. A concentration-dependent increase in the expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1 and heme oxygenase-1 was detected in cells incubated with melatonin. Finally, decreases in the expression and in the activity of superoxide dismutase were observed. We conclude that pharmacological concentrations melatonin modify the redox state of PSC, which might decrease cellular viability.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Melatonina/farmacologia , Oxirredução/efeitos dos fármacos , Células Estreladas do Pâncreas/metabolismo , Animais , Antioxidantes/metabolismo , Catalase/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/genética , Dissulfeto de Glutationa/genética , Heme Oxigenase-1/genética , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Células Estreladas do Pâncreas/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética
11.
J Food Sci Technol ; 56(3): 1371-1379, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30956316

RESUMO

This study was conducted to investigate the effect of the collapse of the endogenous antioxidant enzymes, namely, catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in post-mortem (PM) chicken thigh muscles on the extent of lipid and protein oxidation and the functionality of the muscle in terms of water-holding. To fulfil this objective, the samples were divided into two treatments: one group of muscles (n = 8) was subjected to delay cooling (DC) (at ~ 37 °C for 200 min PM) and then stored at 4 °C for 24 h. The second group (n = 8) was subjected to a normal cooling (NC): samples were immediately chilled at 4 °C for 24 h. DC samples presented a decrease in 16% of CAT, 25% GSH-Px and 20% SOD activity in relation to NC. Consistently, an increase of 36% of total carbonyl, 15% of Schiff bases and 27% of TBA-RS and 14% of tryptophan depletion was observed in DC samples, as compared to NC. The results suggested that DC challenged muscles to struggle against oxidative reactions, consuming endogenous antioxidant defenses and causing protein and lipid oxidation which in turn affect the quality and safety of chicken meat. These results emphasize the role of PM oxidative stress on chicken quality and safety. Antioxidant strategies like fast cooling may be combined with others (dietary antioxidants) to preserve chicken quality against oxidative stress.

12.
J Food Sci ; 84(3): 387-396, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30714623

RESUMO

The exposure to reactive oxygen species (ROS) is an inevitable consequence of living in an aerobic world. The species contribute to the occurrence of oxidative stress in humans in which an uncontrolled production of ROS exceeds the endogenous antioxidant defences leading to the oxidative damage to essential cellular components, such as lipids, proteins, and DNA. The influence of diet on the modulation of the systemic redox status is recognized and, while some dietary components are found to be protective (that is, fruits and vegetables), others are recognized as pro-oxidants (that is, processed meat and other animal-source protein foods). Oxidized proteins and amino acids are potential promoters of luminal and postprandial oxidative stress; preliminary studies have actually reported noxious effects of these species in cultured cells and in experimental animals. However, the underlying pathological mechanisms remain poorly understood. The application of advanced methodological approaches based on mass spectrometric technologies and OMICS disciplines has enabled the elucidation of the molecular basis of the pathological effects of dietary oxidized proteins and amino acids. The present review collects the most recent evidences of the health risks of dietary protein oxidation and proposes reasonable hypotheses and future perspectives on the field.


Assuntos
Aminoácidos/química , Aminoácidos/metabolismo , Proteínas Alimentares/química , Proteínas Alimentares/metabolismo , Estresse Oxidativo , Animais , Humanos , Carne/análise , Oxirredução , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo
13.
Adv Food Nutr Res ; 82: 45-81, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28427536

RESUMO

The impact of dietary habits on our health is indisputable. Consumer's concern on aging and age-related diseases challenges scientists to underline the potential role of food on the extension and guarantee of lifespan and healthspan. While some dietary components and habits are generally regarded as beneficial for our health, some others are being found to exert potential toxic effects and hence, contribute to the onset of particular health disorders. Among the latter, lipid and protein oxidation products formed during food production, storage, processing, and culinary preparation have been recently identified as potentially harmful to humans. Upon intake, food components are further degraded and oxidized during the subsequent digestion phases and the pool of compounds formed in the lumen is in close contact with the lamina propria of the intestines. Some of these oxidation products have been found to promote inflammatory conditions in the gut (i.e., bowel diseases) and are also reasonably linked to the onset of carcinogenic processes. Upon intestinal uptake, some species are distributed by the bloodstream causing an increase in oxidative stress markers and impairment of certain physiological processes through alteration of specific gene expression pathways. This chapter summarizes the most recent discoveries on this topic with particular stress on challenges that we face in the near future: understanding the molecular basis of disease, the suitability of using living animals vs in vitro model systems and the necessity of using massive genomic techniques and versatile mass spectrometric technology.


Assuntos
Análise de Alimentos , Alimentos/normas , Animais , Contaminação de Alimentos , Armazenamento de Alimentos , Humanos , Peroxidação de Lipídeos , Oxirredução
14.
J Food Sci ; 82(3): 622-631, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28192853

RESUMO

This study evaluated the impact of a phenolic-rich acorn extract (200 ppm gallic acid equivalents) and the concentration of oxygen in the packaging system (low-oxygen modified atmosphere; 5% vs. normal-oxygen; 21%) on lipid and protein oxidation and consumers acceptance of the ready-to-eat chicken patties. Samples were subjected to cooking (electric oven, 170 °C/16 min), cold storage (14 d at 4 °C), and reheating (microwave, 600 mW/1 min). Samples treated with acorn extract kept thiobarbituric acid-reactive substances numbers and lipid-derived volatiles at basal levels throughout the whole processing irrespective of the oxygen concentration in the packaging atmosphere. Consistently, treated patties had lower protein carbonyls than control ones. The acorn extract also controlled color and texture deterioration during chilled storage and reheating and improved the color and odor acceptance of the products. Formulating with acorn extract is a feasible strategy to inhibit the oxidation-driven changes and preserve the quality of reheated samples as if there were freshly cooked. Compared to the effect of the antioxidant extract, the concentration of oxygen in the packaging system was negligible in terms of quality preservation.


Assuntos
Antioxidantes/farmacologia , Manipulação de Alimentos/métodos , Conservação de Alimentos/métodos , Produtos da Carne/análise , Nozes/química , Fenóis/farmacologia , Quercus/química , Animais , Atmosfera , Galinhas , Cor , Culinária , Embalagem de Alimentos , Humanos , Odorantes , Extratos Vegetais/farmacologia , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
15.
J Food Sci Technol ; 53(6): 2788-96, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27478235

RESUMO

This study was conducted to analyze the impact of dietary avocado on the oxidative stability of lipids and proteins during pork processing. Loins from control (fed basic diet) and treated pigs (fed on avocado-supplemented diet) were roasted (102 °C/20 min) and subsequently packed in trays wrapped with oxygen-permeable films and chilled at 4 °C for 12 days. At each processing stage (raw, cooked and cooked & chilled), pork samples from both groups were analyzed for the concentration of TBARS, the loss of tryptophan and free thiols, and the formation of protein carbonyls, disulphide bonds and Schiff bases. Processing led to a depletion of tryptophan and sulfur-containing amino acids and an increase of lipid and protein oxidation products. Dietary avocado was not able to protect against the oxidation of tryptophan and thiols but cooked & chilled loins from treated pigs had significantly lower concentration of lipid and protein carbonyls than control counterparts. Likewise, dietary avocado alleviated the formation of Schiff bases during cooking. These results illustrate the benefits of dietary avocado on the oxidative stability of processed pork loins.

16.
Meat Sci ; 116: 253-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26923219

RESUMO

In response to the increasing consumers' mistrust in synthetic additives, the meat industry is focused on searching sources of natural antioxidants. Two different sources of natural antioxidants i) a mixture of garlic, cinnamon, cloves and rosemary essential oils and ii) a Rosa canina L. extract, were compared with a commercial antioxidant additive (Artinox®) for their ability to control protein and lipid oxidation in cooked hams after a settling period of 30 days and at the end of a chilled storage (150 days). The mixture of essential oils was the most effective against lipid oxidation while R. canina L. extracts were the most effective in controlling protein carbonylation at day 150. Accordingly, the use of these antioxidants via brine injection is a successful strategy to enhance the oxidative stability of cooked hams without modifying their physicochemical properties.


Assuntos
Antioxidantes/química , Conservação de Alimentos/métodos , Produtos da Carne/análise , Sais/química , Animais , Culinária , Ácidos Graxos/química , Peroxidação de Lipídeos , Óleos de Plantas/química , Especiarias , Suínos , Substâncias Reativas com Ácido Tiobarbitúrico , Fatores de Tempo
17.
Meat Sci ; 92(4): 451-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22698996

RESUMO

The effect of dog rose (Rosa canina L.; RC), rich in polyphenols and ascorbic acid, on lipid and protein oxidation, colour stability and texture of frankfurters was investigated. Four treatments were prepared: with 5 or 30 g/kg RC extract and without sodium ascorbate and sodium nitrite (5RC and 30RC, respectively), a positive control (with sodium ascorbate and sodium nitrite; PC) and a negative control (without sodium ascorbate, sodium nitrite or RC extract; NC). Hexanal values were much higher throughout storage in NC compared to RC and PC frankfurters (P<0.001). The RC extracts protected against protein oxidation, but not as efficiently as PC (P<0.05). In the RC treated frankfurters, lower a* values were measured compared to PC due to the lack of sodium nitrite. In conclusion, dog rose can act as a natural antioxidant in frankfurters, but not as full replacer for sodium nitrite.


Assuntos
Antioxidantes/química , Conservantes de Alimentos/química , Armazenamento de Alimentos , Frutas/química , Produtos da Carne/análise , Extratos Vegetais/química , Rosa/química , Ácido 2-Aminoadípico/análogos & derivados , Ácido 2-Aminoadípico/análise , Aldeídos/análise , Animais , Antioxidantes/isolamento & purificação , Bélgica , Conservantes de Alimentos/isolamento & purificação , Glutamatos/análise , Peroxidação de Lipídeos , Fenômenos Mecânicos , Pigmentação , Extratos Vegetais/isolamento & purificação , Proteólise , Refrigeração , Espanha , Sus scrofa , Compostos Orgânicos Voláteis/análise
19.
J Agric Food Chem ; 59(10): 5625-35, 2011 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-21480593

RESUMO

The first aim of the present work (study 1) was to analyze ethyl acetate, 70% acetone, and 70% methanol extracts of the peel, pulp, and seed from two avocado (Persea americana Mill.) varieties, namely, 'Hass' and 'Fuerte', for their phenolic composition and their in vitro antioxidant activity using the CUPRAC, DPPH, and ABTS assays. Their antimicrobial potential was also studied. Peels and seeds had higher amounts of phenolics and a more intense in vitro antioxidant potential than the pulp. Peels and seeds were rich in catechins, procyanidins, and hydroxycinnamic acids, whereas the pulp was particularly rich in hydroxybenzoic and hydroxycinnamic acids and procyanidins. The total phenolic content and antioxidant potential of avocado phenolics was affected by the extracting solvent and avocado variety. The avocado materials also displayed moderate antimicrobial effects against Gram-positive bacteria. Taking a step forward (study 2), extracts (70% acetone) from avocado peels and seeds were tested as inhibitors of oxidative reactions in meat patties. Avocado extracts protected meat lipids and proteins against oxidation with the effect on lipids being dependent on the avocado variety.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Frutas/química , Carne/análise , Persea , Fenóis/análise , Animais , Antioxidantes/análise , Proteínas Alimentares , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução , Extratos Vegetais/química , Carbonilação Proteica , Sementes/química , Suínos
20.
J Agric Food Chem ; 58(7): 4448-55, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20196602

RESUMO

The effect of selected phenolic compounds, namely, gallic acid, chlorogenic acid, genistein, catechin, cyanidin-3-glucoside and rutin, on the formation of specific protein carbonyls, alpha-aminoadipic and gamma-glutamic semialdehydes (AAS and GGS, respectively), from oxidized myofibrillar proteins, was studied in the present article. Suspensions containing myofibrillar proteins (20 mg/mL) and the aforementioned phenolic compounds (1 mM) were oxidized (37 degrees C for 20 days) in the presence of copper acetate, iron (FeCl(3)), or myoglobin (10 microM) in combination with 1 mM H(2)O(2) and analyzed for AAS and GGS using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). Suspensions with added alpha-tocopherol (1 mM) and a control group (with no phenolic compound) were also considered. In the presence of copper, the alpha-tocopherol and most phenolic compounds significantly inhibited the formation of AAS and GGS. In iron- and myoglobin-oxidized suspensions, however, some of those phenolic compounds (i.e., chlorogenic acid and genistein) promoted the formation of the semialdehydes. Besides the influence of the oxidation promoters, the overall effect of plant phenolics on protein oxidation is likely affected by the chemical structure of the phenolics and the result of the interactions between these compounds and myofibrillar proteins. Plausible mechanisms for the antioxidant and pro-oxidant effects of plant phenolics on myofibrillar proteins are proposed in the present article. This study highlights the complexity of redox reactions between plant phenolics and oxidizing myofibrillar proteins.


Assuntos
Cobre/química , Ferro/química , Proteínas Musculares/química , Miofibrilas/química , Mioglobina/química , Fenóis/química , Animais , Galinhas , Estrutura Molecular , Oxirredução , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA