Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood ; 142(26): 2305-2314, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37883798

RESUMO

ABSTRACT: Platelet-activating anti-platelet factor 4 (PF4)/heparin antibodies and anti-PF4 antibodies cause heparin-induced thrombocytopenia (HIT) and vaccine-induced immune thrombocytopenia and thrombosis (VITT), respectively. Diagnostic and treatment considerations differ somewhat between HIT and VITT. We identified patients with thrombocytopenia and thrombosis without proximate heparin exposure or adenovirus-based vaccination who tested strongly positive by PF4/polyanion enzyme-immunoassays and negative/weakly positive by heparin-induced platelet activation (HIPA) test but strongly positive by PF4-induced platelet activation (PIPA) test (ie, VITT-like profile). We tested these patients by a standard chemiluminescence assay that detects anti-PF4/heparin antibodies found in HIT (HemosIL AcuStar HIT-IgG(PF4-H)) as well as a novel chemiluminescence assay for anti-PF4 antibodies found in VITT. Representative control sera included an exploratory anti-PF4 antibody-positive but HIPA-negative/weak cohort obtained before 2020 (n = 188). We identified 9 patients with a clinical-pathological profile of a VITT-like disorder in the absence of proximate heparin or vaccination, with a high frequency of stroke (arterial, n = 3; cerebral venous sinus thrombosis, n = 4), thrombocytopenia (median platelet count nadir, 49 × 109/L), and hypercoagulability (greatly elevated D-dimer levels). VITT-like serological features included strong reactivity by PIPA (aggregation <10 minutes in 9/9 sera) and positive testing in the novel anti-PF4 chemiluminescence assay (3/9 also tested positive in the anti-PF4/heparin chemiluminescence assay). Our exploratory cohort identified 13 additional patient sera obtained before 2020 with VITT-like anti-PF4 antibodies. Platelet-activating VITT-like anti-PF4 antibodies should be considered in patients with thrombocytopenia, thrombosis, and very high D-dimer levels, even without a proximate exposure to heparin or adenovirus vector vaccines.


Assuntos
Anticorpos , Trombocitopenia , Trombose , Trombocitopenia/diagnóstico , Trombocitopenia/patologia , Heparina , Vacinação , Humanos , Fator Plaquetário 4/metabolismo , Anticorpos/análise , Masculino , Feminino , Pré-Escolar , Criança , Adulto , Trombose/diagnóstico , Trombose/patologia
2.
Nat Med ; 28(4): 752-765, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35411077

RESUMO

Whole-brain radiotherapy (WBRT) is the treatment backbone for many patients with brain metastasis; however, its efficacy in preventing disease progression and the associated toxicity have questioned the clinical impact of this approach and emphasized the need for alternative treatments. Given the limited therapeutic options available for these patients and the poor understanding of the molecular mechanisms underlying the resistance of metastatic lesions to WBRT, we sought to uncover actionable targets and biomarkers that could help to refine patient selection. Through an unbiased analysis of experimental in vivo models of brain metastasis resistant to WBRT, we identified activation of the S100A9-RAGE-NF-κB-JunB pathway in brain metastases as a potential mediator of resistance in this organ. Targeting this pathway genetically or pharmacologically was sufficient to revert the WBRT resistance and increase therapeutic benefits in vivo at lower doses of radiation. In patients with primary melanoma, lung or breast adenocarcinoma developing brain metastasis, endogenous S100A9 levels in brain lesions correlated with clinical response to WBRT and underscored the potential of S100A9 levels in the blood as a noninvasive biomarker. Collectively, we provide a molecular framework to personalize WBRT and improve its efficacy through combination with a radiosensitizer that balances therapeutic benefit and toxicity.


Assuntos
Neoplasias Encefálicas , Melanoma , Neoplasias Encefálicas/secundário , Irradiação Craniana , Humanos , Melanoma/radioterapia
3.
EMBO Mol Med ; 14(3): e14552, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35174975

RESUMO

We report a medium-throughput drug-screening platform (METPlatform) based on organotypic cultures that allows to evaluate inhibitors against metastases growing in situ. By applying this approach to the unmet clinical need of brain metastasis, we identified several vulnerabilities. Among them, a blood-brain barrier permeable HSP90 inhibitor showed high potency against mouse and human brain metastases at clinically relevant stages of the disease, including a novel model of local relapse after neurosurgery. Furthermore, in situ proteomic analysis applied to metastases treated with the chaperone inhibitor uncovered a novel molecular program in brain metastasis, which includes biomarkers of poor prognosis and actionable mechanisms of resistance. Our work validates METPlatform as a potent resource for metastasis research integrating drug-screening and unbiased omic approaches that is compatible with human samples. Thus, this clinically relevant strategy is aimed to personalize the management of metastatic disease in the brain and elsewhere.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Barreira Hematoencefálica , Neoplasias Encefálicas/tratamento farmacológico , Camundongos , Recidiva Local de Neoplasia , Proteômica
4.
Methods Mol Biol ; 996: 203-17, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23504426

RESUMO

Molecular machines and nanomotors are sophisticated biological assemblies that convert potential energy stored either in transmembrane ion gradients or in ATP into kinetic energy. Studying these highly dynamic biological devices by X-ray crystallography is challenging, as they are difficult to produce, purify, and crystallize. Phage display technology allows us to put a handle on these molecules in the form of highly specific antibody fragments that can also stabilize conformations and allow versatile labelling for electron microscopy, immunohistochemistry, and biophysics experiments.Here, we describe a widely applicable protocol for selecting high-affinity monoclonal antibody fragments against a complex molecular machine, the A-type ATPase from T. thermophilus that allows fast and simple purification of this transmembrane rotary motor from its wild-type source. The approach can be readily extended to other integral membrane proteins and protein complexes as well as to soluble molecular machines and nanomotors.


Assuntos
Anticorpos Imobilizados/química , Anticorpos Monoclonais/química , Fragmentos de Imunoglobulinas/química , Afinidade de Anticorpos , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Biotinilação , Técnicas de Visualização da Superfície Celular , Cromatografia de Afinidade , Escherichia coli , Humanos , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/isolamento & purificação , Nanopartículas/análise , Nanopartículas/química , Nanotecnologia , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/isolamento & purificação
6.
J Immunol Methods ; 336(1): 37-44, 2008 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-18448115

RESUMO

Identification of CD4+ T-cell epitopes is a critical step in studying and modulating the immune responses to tumors, infectious agents, and autoantigens. Here we report a facile, accurate, and high-throughput method for CD4+ T-cell epitope identification using yeast displaying pathogen-derived peptide library. A library of DNA fragments that encode all the possible peptides with 10-20 amino acids from the antigens (single antigenic proteins or pathogenic organisms) are fused to the gene encoding the restriction single-chain MHC class II molecule in a yeast display vector. The resultant library of recombinant yeast cells are analyzed by FACS to identify those containing peptides with high affinity towards the restriction MHC molecule, which are subsequently screened for their ability to induce antigen-specific T-cell activation. DNA sequence analysis of selected positive clones results in direct identification of the antigenic peptides. We show that this method can be used to rapidly pinpoint the HA(306-322) epitope from the haemagglutinin protein and the entire influenza virus X31/A/Aichi/68 genome, respectively.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Mapeamento de Epitopos/métodos , Epitopos de Linfócito T/análise , Antígeno HLA-DR1/imunologia , Clonagem Molecular , Epitopos de Linfócito T/isolamento & purificação , Citometria de Fluxo , Hemaglutininas/imunologia , Humanos , Vírus da Influenza A/imunologia , Ativação Linfocitária , Biblioteca de Peptídeos , Plasmídeos/genética , Plasmídeos/imunologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/imunologia
7.
Biochem Biophys Res Commun ; 301(1): 167-75, 2003 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-12535657

RESUMO

A monoclonal antibody (mAb 2A) able to react against the RNA replicase NIb from plum pox virus (PPV) was obtained and used for generating a specific scFv fragment. The VH and VL coding sequences were cloned and expressed as a fusion scFv protein to alkaline phosphatase. This fusion protein was able to recognise viral NIb in both Western and tissue-print ELISA blots. The affinity and specificity of scFv2A for NIb was similar to that of the parental mAb and the region YLEAFY from PPV-NIb was identified by PEPSCAN assay as the putative epitope. Isolated VH domains from scFv2A were also expressed as fusion to alkaline phosphatase. However, their ability to react against NIb was greatly altered. scFv2A fragments were transiently expressed in the cytosol of Nicotiana benthamiana and although they accumulated to low levels, inhibition-ELISA results indicated that they retained antigen-binding activity.


Assuntos
Anticorpos Monoclonais/imunologia , RNA Polimerases Dirigidas por DNA/imunologia , Vírus Eruptivo da Ameixa/enzimologia , Proteínas Virais/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Afinidade de Anticorpos , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Mapeamento de Epitopos , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/metabolismo , Camundongos , Fases de Leitura Aberta , Vírus Eruptivo da Ameixa/genética , Vírus Eruptivo da Ameixa/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Sensibilidade e Especificidade , Alinhamento de Sequência , Nicotiana/citologia , Nicotiana/fisiologia , Proteínas Virais/química , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA