Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 95(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328302

RESUMO

The CD200-CD200R pathway is involved in inhibition of immune responses, and the importance of this pathway to infectious disease is highlighted by the fact that viral CD200 (vCD200) molecules have been found to be encoded by several DNA viruses, including the human gammaherpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV), and the closely related rhesus macaque rhadinovirus (RRV). KSHV vCD200 is the most extensively studied vCD200 molecule, however, the only herpesvirus vCD200 molecule to be examined in vivo is that encoded by RRV. Our prior studies have demonstrated that RRV vCD200 is a functional CD200 homologue that is capable of affecting immune responses in vivo, and further, that RRV can express a secreted form of vCD200 (vCD200-Sec) during infection. Despite this information, RRV vCD200 has not been examined specifically for effects on RM CD200R signaling, and the functionality of vCD200-Sec has not been examined in any context. Thus, we developed an in vitro model system in which B cells expressing vCD200 were utilized to assess the effects of this molecule on the regulation of myeloid cells expressing RM CD200R, mimicking interactions that are predicted to occur in vivo Our findings suggest that RRV vCD200 can bind and induce functional signals through RM CD200R, while vCD200-Sec represents a non-functional protein incapable of affecting CD200R signaling. We also provide the first demonstration of the function of RM CD200, which appears to possess more robust signaling capabilities than RRV vCD200, and also show that KSHV vCD200 does not efficiently induce signaling via RM CD200R.IMPORTANCE Viral CD200 homologues are encoded by KSHV and the closely related RRV. Though RRV vCD200 has been examined, questions still exist in regard to the ability of this molecule to induce signaling via rhesus macaque CD200R, as well as the potential function of a secreted form of vCD200. Further, all previous in vitro studies of RRV vCD200 have utilized an Fc fusion protein to examine functionality, which does not replicate the structural properties of the membrane-associated form of vCD200 that is naturally produced during RRV infection. In this study, we demonstrate for the first time that membrane-expressed RRV vCD200 is capable of inducing signal transduction via RM CD200R, while the secreted form of vCD200 appears to be non-functional. Further, we also demonstrate that RM CD200 induces signaling via RM CD200R, and is more robust than RRV vCD200, while KSHV vCD200 does not appear to induce efficient signaling via RM CD200R.

2.
PLoS One ; 15(2): e0228484, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32017809

RESUMO

Rhesus macaque (RM) rhadinovirus (RRV) is a simian gamma-2 herpesvirus closely related to human Kaposi's sarcoma-associated herpesvirus (KSHV). RRV is associated with the development of diseases in simian immunodeficiency virus (SIV) co-infected RM that resemble KSHV-associated pathologies observed in HIV-infected humans, including B cell lymphoproliferative disorders (LPD) and lymphoma. Importantly, how de novo KSHV infection affects the expression of host genes in humans, and how these alterations in gene expression affect viral replication, latency, and disease is unknown. The utility of the RRV/RM infection model provides a novel approach to address these questions in vivo, and utilizing the RRV bacterial artificial chromosome (BAC) system, the effects of specific viral genes on host gene expression patterns can also be explored. To gain insight into the effects of RRV infection on global host gene expression patterns in vivo, and to simultaneously assess the contributions of the immune inhibitory viral CD200 (vCD200) molecule to host gene regulation, RNA-seq was performed on pre- and post-infection lymph node (LN) biopsy samples from RM infected with either BAC-derived WT (n = 4) or vCD200 mutant RRV (n = 4). A variety of genes were identified as being altered in LN tissue samples due to RRV infection, including cancer-associated genes activation-induced cytidine deaminase (AICDA), glypican-1 (GPC1), CX3C chemokine receptor 1 (CX3CR1), and Ras dexamethasone-induced 1 (RasD1). Further analyses also indicate that GPC1 may be associated with lymphomagenesis. Finally, comparison of infection groups identified the differential expression of host gene thioredoxin interacting protein (TXNIP), suggesting a possible mechanism by which vCD200 negatively affects RRV viral loads in vivo.


Assuntos
Perfilação da Expressão Gênica/veterinária , Infecções por Herpesviridae/veterinária , Rhadinovirus/patogenicidade , Infecções Tumorais por Vírus/veterinária , Animais , Receptor 1 de Quimiocina CX3C/genética , Transformação Celular Neoplásica/genética , Citidina Desaminase/genética , Regulação Neoplásica da Expressão Gênica , Glipicanas/genética , Infecções por Herpesviridae/genética , Tecido Linfoide/metabolismo , Macaca mulatta , Análise de Sequência de RNA/veterinária , Infecções Tumorais por Vírus/genética , Latência Viral , Replicação Viral , Proteínas ras/genética
3.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30626678

RESUMO

Interferon (IFN) production and the subsequent induction of IFN-stimulated genes (ISGs) are highly effective innate strategies utilized by cells to protect against invading pathogens, including viruses. Critical components involved in this innate process are promyelocytic leukemia nuclear bodies (PML-NBs), which are subnuclear structures required for the development of a robust IFN response. As such, PML-NBs serve as an important hurdle for viruses to overcome to successfully establish an infection. Both Kaposi's sarcoma-associated herpesvirus (KSHV) and the closely related rhesus macaque rhadinovirus (RRV) are unique for encoding viral homologs of IFN regulatory factors (termed vIRFs) that can manipulate the host immune response by multiple mechanisms. All four KSHV vIRFs inhibit the induction of IFN, while vIRF1 and vIRF2 can inhibit ISG induction downstream of the IFN receptor. Less is known about the RRV vIRFs. RRV vIRF R6 can inhibit the induction of IFN by IRF3; however, it is not known whether any RRV vIRFs inhibit ISG induction following IFN receptor signaling. In our present study, we demonstrate that the RRV vIRF R12 aids viral replication in the presence of the type I IFN response. This is achieved in part through the disruption of PML-NBs and the inhibition of robust ISG transcription.IMPORTANCE KSHV and RRV encode a unique set of homologs of cellular IFN regulatory factors, termed vIRFs, which are hypothesized to help these viruses evade the innate immune response and establish infections in their respective hosts. Our work elucidates the role of one RRV vIRF, R12, and demonstrates that RRV can dampen the type I IFN response downstream of IFN signaling, which would be important for establishing a successful infection in vivo.


Assuntos
Fatores Reguladores de Interferon/genética , Interferon Tipo I/genética , Corpos de Inclusão Intranuclear/genética , Leucemia Promielocítica Aguda/genética , Macaca mulatta/virologia , Rhadinovirus/genética , Transdução de Sinais/genética , Proteínas Virais/genética , Animais , Linhagem Celular , Herpesvirus Humano 8/genética , Humanos , Imunidade Inata/genética , Fator Regulador 3 de Interferon/genética , Leucemia Promielocítica Aguda/virologia , Receptores de Interferon/genética , Transcrição Gênica/genética , Replicação Viral/genética
4.
J Virol ; 90(20): 9350-63, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27512057

RESUMO

UNLABELLED: Japanese macaque (JM) rhadinovirus (JMRV) is a novel, gamma-2 herpesvirus that was recently isolated from JM with inflammatory demyelinating encephalomyelitis (JME). JME is a spontaneous and chronic disease with clinical characteristics and immunohistopathology comparable to those of multiple sclerosis in humans. Little is known about the molecular biology of JMRV. Here, we sought to identify and characterize the small RNAs expressed during lytic JMRV infection using deep sequencing. Fifteen novel viral microRNAs (miRNAs) were identified in JMRV-infected fibroblasts, all of which were readily detectable by 24 h postinfection and accumulated to high levels by 72 h. Sequence comparisons to human Kaposi's sarcoma-associated herpesvirus (KSHV) miRNAs revealed several viral miRNA homologs. To functionally characterize JMRV miRNAs, we screened for their effects on nuclear factor kappa B (NF-κB) signaling in the presence of two proinflammatory cytokines, tumor necrosis factor alpha (TNF-α) and interleukin-1ß (IL-1ß). Multiple JMRV miRNAs suppressed cytokine-induced NF-κB activation. One of these miRNAs, miR-J8, has seed sequence homology to members of the cellular miR-17/20/106 and miR-373 families, which are key players in cell cycle regulation as well as inflammation. Using reporters, we show that miR-J8 can target 3' untranslated regions (UTRs) with miR-17-5p or miR-20a cognate sites. Our studies implicate JMRV miRNAs in the suppression of innate antiviral immune responses, which is an emerging feature of many viral miRNAs. IMPORTANCE: Gammaherpesviruses are associated with multiple diseases linked to immunosuppression and inflammation, including AIDS-related cancers and autoimmune diseases. JMRV is a recently identified herpesvirus that has been linked to JME, an inflammatory demyelinating disease in Japanese macaques that mimics multiple sclerosis. There are few large-animal models for gammaherpesvirus-associated pathogenesis. Here, we provide the first experimental evidence of JMRV miRNAs in vitro and demonstrate that one of these viral miRNAs can mimic the activity of the cellular miR-17/20/106 family. Our work provides unique insight into the roles of viral miRNAs during rhadinovirus infection and provides an important step toward understanding viral miRNA function in a nonhuman primate model system.


Assuntos
Macaca/virologia , MicroRNAs/genética , RNA Viral/genética , Rhadinovirus/genética , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Linhagem Celular , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/virologia , Encefalomielite/genética , Encefalomielite/virologia , Perfilação da Expressão Gênica/métodos , Células HEK293 , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Interleucina-1beta/genética , Japão , NF-kappa B/genética , Homologia de Sequência , Fator de Necrose Tumoral alfa/genética
5.
J Virol ; 88(18): 10635-54, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24991004

RESUMO

UNLABELLED: Rhesus macaque rhadinovirus (RRV) is a gammaherpesvirus of rhesus macaque (RM) monkeys that is closely related to human herpesvirus 8 (HHV-8)/Kaposi's Sarcoma-associated herpesvirus (KSHV), and it is capable of inducing diseases in simian immunodeficiency virus (SIV)-infected RM that are similar to those seen in humans coinfected with HIV and HHV-8. Both HHV-8 and RRV encode viral CD200 (vCD200) molecules that are homologues of cellular CD200, a membrane glycoprotein that regulates immune responses and helps maintain immune homeostasis via interactions with the CD200 receptor (CD200R). Though the functions of RRV and HHV-8 vCD200 molecules have been examined in vitro, the precise roles that these viral proteins play during in vivo infection remain unknown. Thus, to address the contributions of RRV vCD200 to immune regulation and disease in vivo, we generated a form of RRV that lacked expression of vCD200 for use in infection studies in RM. Our data indicated that RRV vCD200 expression limits immune responses against RRV at early times postinfection and also impacts viral loads, but it does not appear to have significant effects on disease development. Further, examination of the distribution pattern of CD200R in RM indicated that this receptor is expressed on a majority of cells in peripheral blood mononuclear cells, including B and T cells, suggesting potentially wider regulatory capabilities for both vCD200 and CD200 that are not strictly limited to myeloid lineage cells. In addition, we also demonstrate that RRV infection affects CD200R expression levels in vivo, although vCD200 expression does not play a role in this phenomenon. IMPORTANCE: Cellular CD200 and its receptor, CD200R, compose a pathway that is important in regulating immune responses and is known to play a role in a variety of human diseases. A number of pathogens have been found to modulate the CD200-CD200R pathway during infection, including human herpesvirus 8 (HHV-8), the causative agent of Kaposi's sarcoma and B cell neoplasms in AIDS patients, and a closely related primate virus, rhesus macaque rhadinovirus (RRV), which infects and induces disease in rhesus macaque monkeys. HHV-8 and RRV encode homologues of CD200, termed vCD200, which are thought to play a role in preventing immune responses against these viruses. However, neither molecule has been studied in an in vivo model of infection to address their actual contributions to immunoregulation and disease. Here we report findings from our studies in which we analyzed the properties of a mutant form of RRV that lacks vCD200 expression in infected rhesus macaques.


Assuntos
Antígenos CD/imunologia , Infecções por Herpesviridae/veterinária , Doenças dos Macacos/imunologia , Rhadinovirus/imunologia , Carga Viral , Proteínas Virais/imunologia , Animais , Antígenos CD/genética , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Macaca mulatta , Doenças dos Macacos/genética , Doenças dos Macacos/virologia , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Rhadinovirus/genética , Rhadinovirus/fisiologia , Proteínas Virais/genética
6.
Curr Opin Virol ; 3(3): 245-50, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23747119

RESUMO

Rhesus macaque rhadinovirus (RRV) is a gamma-2 herpesvirus that naturally infects rhesus macaque (RM) monkeys and is closely related to human herpesvirus-8 (HHV-8)/Kaposi's sarcoma-associated herpesvirus (KSHV). Infection of immunodeficient RM induces disease in infected RM that resembles KSHV-associated pathologies. Importantly, RRV possesses homologues of KSHV ORFs that are postulated to play a role in disease development. As such, RRV has emerged as a prominent in vivo model system for examining mechanisms of infection and disease of these pathogenic herpesviruses, and has provided unique insight into how these viruses cause disease.


Assuntos
Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Doenças dos Primatas/patologia , Doenças dos Primatas/virologia , Rhadinovirus/patogenicidade , Infecções Tumorais por Vírus/patologia , Infecções Tumorais por Vírus/virologia , Animais , Macaca mulatta
7.
J Virol ; 86(4): 2197-211, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22156526

RESUMO

Kaposi's sarcoma-associated herpesvirus and rhesus macaque rhadinovirus (RRV), two closely related gammaherpesviruses, are unique in their expression of viral homologs of cellular interferon regulatory factors (IRFs), termed viral IRFs (vIRFs). To assess the role of vIRFs during de novo infection, we have utilized the bacterial artificial chromosome clone of wild-type RRV(17577) (WT(BAC) RRV) to generate a recombinant virus with all 8 of the vIRFs deleted (vIRF-ko RRV). The infection of primary rhesus fibroblasts and peripheral blood mononuclear cells (PBMCs) with vIRF-ko RRV resulted in earlier and increased induction of type I interferon (IFN) (IFN-α/ß) and type II IFN (IFN-γ). Additionally, plasmacytoid dendritic cells maintained higher levels of IFN-α production in PBMC cultures infected with vIRF-ko RRV than in cultures infected with WT(BAC) RRV. Moreover, the nuclear accumulation of phosphorylated IRF-3, which is necessary for the induction of type I IFN, was also inhibited following WT(BAC) RRV infection. These findings demonstrate that during de novo RRV infection, vIRFs are inhibiting the induction of IFN at the transcriptional level, and one potential mechanism for this is the disruption of the activation and localization of IRF-3.


Assuntos
Regulação para Baixo , Infecções por Herpesviridae/veterinária , Fatores Reguladores de Interferon/metabolismo , Interferon Tipo I/genética , Interferon gama/genética , Doenças dos Primatas/genética , Rhadinovirus/fisiologia , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Interferon Tipo I/metabolismo , Interferon gama/metabolismo , Macaca mulatta , Doenças dos Primatas/metabolismo , Doenças dos Primatas/virologia , Rhadinovirus/genética , Proteínas Virais/genética
8.
J Virol ; 86(5): 2769-79, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22171275

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) and the closely related gamma-2 herpesvirus rhesus macaque (RM) rhadinovirus (RRV) are the only known viruses to encode viral homologues of the cellular interferon (IFN) regulatory factors (IRFs). Recent characterization of a viral IRF (vIRF) deletion clone of RRV (vIRF-knockout RRV [vIRF-ko RRV]) demonstrated that vIRFs inhibit induction of type I and type II IFNs during RRV infection of peripheral blood mononuclear cells. Because the IFN response is a key component to a host's antiviral defenses, this study has investigated the role of vIRFs in viral replication and the development of the immune response during in vivo infection in RMs, the natural host of RRV. Experimental infection of RMs with vIRF-ko RRV resulted in decreased viral loads and diminished B cell hyperplasia, a characteristic pathology during acute RRV infection that often develops into more severe lymphoproliferative disorders in immune-compromised animals, similar to pathologies in KSHV-infected individuals. Moreover, in vivo infection with vIRF-ko RRV resulted in earlier and sustained production of proinflammatory cytokines and earlier induction of an anti-RRV T cell response compared to wild-type RRV infection. These findings reveal the broad impact that vIRFs have on pathogenesis and the immune response in vivo and are the first to validate the importance of vIRFs during de novo infection in the host.


Assuntos
Modelos Animais de Doenças , Infecções por Herpesviridae/imunologia , Fatores Reguladores de Interferon/imunologia , Macaca mulatta , Rhadinovirus/imunologia , Proteínas Virais/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/virologia , Infecções por Herpesviridae/virologia , Humanos , Fatores Reguladores de Interferon/genética , Interferons/imunologia , Rhadinovirus/genética , Proteínas Virais/genética
9.
J Virol ; 81(6): 2957-69, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17215283

RESUMO

Rhesus rhadinovirus (RRV) is closely related to Kaposi's sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8 (HHV-8) and causes KSHV-like diseases in immunocompromised rhesus macaques (RM) that resemble KSHV-associated diseases including multicentric Castleman's disease and non-Hodgkin's lymphoma. RRV retains a majority of open reading frames (ORFs) postulated to be involved in the pathogenesis of KSHV and is the closest available animal model to KSHV infection in humans. Here we describe the generation of a recombinant clone of RRV strain 17577 (RRV(17577)) utilizing bacterial artificial chromosome (BAC) technology. Characterization of the RRV BAC demonstrated that it is a pathogenic molecular clone of RRV(17577), producing virus that behaves like wild-type RRV both in vitro and in vivo. Specifically, BAC-derived RRV displays wild-type growth properties in vitro and readily infects simian immunodeficiency virus-infected RM, inducing B cell hyperplasia, persistent lymphadenopathy, and persistent infection in these animals. This RRV BAC will allow for rapid genetic manipulation of the RRV genome, facilitating the creation of recombinant versions of RRV that harbor specific alterations and/or deletions of viral ORFs. This system will provide insights into the roles of specific RRV genes in various aspects of the viral life cycle and the RRV-associated pathogenesis in vivo in an RM model of infection. Furthermore, the generation of chimeric versions of RRV containing KSHV genes will allow analysis of the function and contributions of KSHV genes to viral pathogenesis by using a relevant primate model system.


Assuntos
Cromossomos Artificiais Bacterianos , Herpesvirus Humano 8/genética , Macaca mulatta/virologia , Rhadinovirus/genética , Sarcoma de Kaposi/etiologia , Animais , Células Cultivadas , DNA Viral/análise , Fibroblastos/virologia , Herpesvirus Humano 8/isolamento & purificação , Humanos , Hibridização de Ácido Nucleico , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , Rhadinovirus/química , Sarcoma de Kaposi/virologia , Análise de Sequência de DNA
10.
J Virol ; 80(6): 3098-103, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16501121

RESUMO

A viral CD200 homologue (vCD200) encoded by open reading frame R15 of rhesus rhadinovirus (RRV), a gammaherpesvirus closely related to human herpesvirus 8 (HHV-8), is described here. RRV vCD200 shares 30% and 28% amino acid identity with human CD200 (huCD200) and HHV-8 vCD200, respectively. In vitro analysis indicated that an Fc fusion (vCD200-Fc) is expressed as a glycoprotein with a core molecular mass of 53 kDa. Utilizing monoclonal antibodies raised against vCD200-Fc, vCD200 expression was detected on the surfaces of and within supernatants from infected fibroblasts. Furthermore, in vitro assays demonstrated that vCD200-Fc treatment of monocyte-derived macrophages reduces tumor necrosis factor transcript and protein levels, implying that RRV encodes a functional vCD200.


Assuntos
Antígenos CD/metabolismo , Macaca mulatta/virologia , Rhadinovirus/genética , Rhadinovirus/patogenicidade , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD/química , Antígenos CD/genética , Células CHO , Cricetinae , Fibroblastos/virologia , Humanos , Macrófagos/virologia , Dados de Sequência Molecular , Rhadinovirus/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas Virais/química , Proteínas Virais/genética
11.
J Virol ; 77(3): 1738-46, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12525607

RESUMO

Rhesus rhadinovirus (RRV) is a gamma-2 herpesvirus and is the rhesus macaque homologue of human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus. DNA sequence analysis of RRV indicates that it shares numerous open reading frames (ORFs) with HHV-8, including one (ORF74) encoding a seven-transmembrane-spanning G protein-coupled receptor (GPCR) with similarity to cellular chemokine receptors. Examination of the predicted amino acid sequence of RRV ORF74 reveals that it encodes a seven-transmembrane-spanning GPCR sharing 40.8% amino acid sequence identity with HHV-8 ORF74 and 24.1% amino acid sequence identity with rhesus macaque CXCR2. In addition, immunofluorescence studies indicate that an epitope-tagged version of RRV ORF74 is expressed on the surfaces of transfected cells, suggesting that this protein is in fact a membrane receptor. In in vitro cell culture assays, RRV ORF74 possesses transforming potential, as NIH 3T3 clones stably expressing the receptor demonstrate an increased ability to grow in soft agarose and to induce tumor formation in nude mice. Further analysis of RRV ORF74 indicates that expression of the receptor in NIH 3T3 cells causes an increased secretion of vascular endothelial growth factor and activation of the ERK1/2 (p44/42) mitogen-activated protein kinase signaling pathway. The results of these studies suggest that RRV ORF74 encodes a GPCR with properties similar to those of its homologue in HHV-8 and that this gene may play a role in RRV-associated pathogenesis.


Assuntos
Proteínas de Ligação ao GTP/fisiologia , Macaca mulatta/virologia , Fases de Leitura Aberta , Receptores de Superfície Celular/química , Receptores de Quimiocinas/química , Rhadinovirus/genética , Proteínas Virais/química , Células 3T3 , Sequência de Aminoácidos , Animais , Transformação Celular Neoplásica , Fatores de Crescimento Endotelial/biossíntese , Ativação Enzimática , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Linfocinas/biossíntese , Camundongos , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Receptores de Interleucina-8B/química , Rhadinovirus/química , Alinhamento de Sequência , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA