Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Front Cell Infect Microbiol ; 13: 1172021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457961

RESUMO

Introduction: Patients with Human Hyper IgM syndromes (HIGM) developed pulmonary and gastrointestinal infections since infancy and most patients have mutations in the CD40 ligand (CD40L) gene. Most HIGM patients compared to healthy subjects have higher/similar IgM and lower IgG, and IgA serum concentrations but gut antibody concentrations are unknown. CD40L on activated T-cells interacts with CD40 on B-cells, essential for the formation of germinal centres (GCs) inside secondary lymphoid organs (SLOs), where high-affinity antibodies, long-lived antibody-secreting plasma cells, and memory B-cells, are produced. C57BL6-CD40 ligand deficient mice (C57BL6-cd40l -/-), are a model of HIGM, because serum immunoglobulin concentrations parallel levels observed in HIGM patients and have higher faecal IgA concentrations. In mice, TGFß and other cytokines induce IgA production. Aims: To compare and evaluate B-cell populations and IgA-producing plasma cells in peritoneal lavage, non-gut-associated SLOs, spleen/inguinal lymph nodes (ILN), and gut-associated SLOs, mesenteric lymph nodes (MLN)/Peyer´s patches (PP) of unimmunised C57BL6-cd40l -/- and C57BL6-wild-type (WT) mice. Material and methods: Peritoneal lavages, spleens, ILN, MLN, and PP from 8-10 weeks old C57BL6-cd40l -/- and WT mice, were obtained. Organ cryosections were analysed by immunofluorescence and B-cell populations and IgA-positive plasma cell suspensions by flow cytometry. Results: In unimmunised WT mice, GCs were only observed in the gut-associated SLOs, but GCs were absent in all C57BL6-cd40l -/- SLOs. PP and MLN of C57BL6-cd40l -/- mice exhibited a significantly higher number of IgA-producing cells than WT mice. In the spleen and ILN of C57BL6-cd40l- /- mice IgA-producing cells significantly decreased, while IgM-positive plasma cells increased. C57BL6-cd40l -/- B-1 cells were more abundant in all analysed SLOs, whereas in WT mice most B-1 cells were contained within the peritoneal cavity. C57BL6-cd40l -/- B-cells in MLN expressed a higher TGFß receptor-1 than WT mice. Mouse strains small intestine microvilli (MV), have a similar frequency of IgA-positive cells. Discussion: Together our results confirm the role of PP and MLN as gut inductive sites, whose characteristic features are to initiate an IgA preferential immune response production in these anatomical sites even in the absence of GCs. IgA antibodies play a pivotal role in neutralising, eliminating, and regulating potential pathogens and microorganisms in the gut.


Assuntos
Ligante de CD40 , Síndrome de Imunodeficiência com Hiper-IgM , Humanos , Camundongos , Animais , Centro Germinativo , Intestino Delgado , Imunoglobulina A , Imunoglobulina M , Fator de Crescimento Transformador beta
2.
Microb Pathog ; 176: 106005, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36717005

RESUMO

The Gram-negative bacteria Brucella abortus is a major cause of brucellosis in animals and humans. The host innate immune response to B. abortus is mainly associated with phagocytic cells such as dendritic cells, neutrophils, and macrophages. However, as mast cells naturally reside in the main bacterial entry sites they may be involved in bacterial recognition. At present, little is known about the role of mast cells during B. abortus infection. The role of the innate immune receptors TLR2 and TLR4 in activation of mast cells by B. abortus (strain RB51) infection was analyzed in this study. The results showed that B. abortus did not induce mast cell degranulation, but did induce the synthesis of the cytokines IL-1ß, IL-6, TNF-α, CCL3, CCL4, and CCL5. Furthermore, B. abortus stimulated key cell signaling molecules involved in mast cell activation such as p38 and NF-κB. Blockade of the receptors TLR2 and TLR4 decreased TNF-α and IL-6 release by mast cells in response to B. abortus. Taken together, our results demonstrate that mast cells are activated by B. abortus and may play a role in inducing an inflammatory response during the initial phase of the infection.


Assuntos
Brucella abortus , Brucelose , Humanos , Animais , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Mastócitos , Fator de Necrose Tumoral alfa , Interleucina-6
3.
Immunobiology ; 227(6): 152288, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209721

RESUMO

The clinical presentation of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ranges between mild respiratory symptoms and a severe disease that shares many of the features of sepsis. Sepsis is a deregulated response to infection that causes life-threatening organ failure. During sepsis, the intestinal epithelial cells are affected, causing an increase in intestinal permeability and allowing microbial translocation from the intestine to the circulation, which exacerbates the inflammatory response. Here we studied patients with moderate, severe and critical COVID-19 by measuring a panel of molecules representative of the innate and adaptive immune responses to SARS-CoV-2, which also reflect the presence of systemic inflammation and the state of the intestinal barrier. We found that non-surviving COVID-19 patients had higher levels of low-affinity anti-RBD IgA antibodies than surviving patients, which may be a response to increased microbial translocation. We identified sFas and granulysin, in addition to IL-6 and IL-10, as possible early biomarkers with high sensitivity (>73 %) and specificity (>51 %) to discriminate between surviving and non-surviving COVID-19 patients. Finally, we found that the microbial metabolite d-lactate and the tight junction regulator zonulin were increased in the serum of patients with severe COVID-19 and in COVID-19 patients with secondary infections, suggesting that increased intestinal permeability may be a source of secondary infections in these patients. COVID-19 patients with secondary infections had higher disease severity and mortality than patients without these infections, indicating that intestinal permeability markers could provide complementary information to the serum cytokines for the early identification of COVID-19 patients with a high risk of a fatal outcome.


Assuntos
COVID-19 , Coinfecção , Sepse , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Interleucina-6 , Interleucina-10 , Permeabilidade , Biomarcadores , Intestinos
4.
Microbiol Immunol ; 66(10): 477-490, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35856253

RESUMO

Most individuals infected with Mycobacterium tuberculosis (Mtb) have latent tuberculosis (TB), which can be diagnosed with tests (such as the QuantiFERON-TB Gold test [QFT]) that detect the production of IFN-γ by memory T cells in response to the Mtb-specific antigens 6 kDa early secretory antigenic target EsxA (Rv3875) (ESAT-6), 10 kDa culture filtrate antigen EsxB (Rv3874) (CFP-10), and Mtb antigen of 7.7 kDa (Rv2654c) (TB7.7). However, the immunological mechanisms that determine if an individual will develop latent or active TB remain incompletely understood. Here we compared the response of innate and adaptive peripheral blood lymphocytes from healthy individuals without Mtb infection (QFT negative) and from individuals with latent (QFT positive) or active TB infection, to determine the characteristics of these cells that correlate with each condition. In active TB patients, the levels of IFN-γ that were produced in response to Mtb-specific antigens had high positive correlations with IL-1ß, TNF-α, MCP-1, IL-6, IL-12p70, and IL-23, while the proinflammatory cytokines had high positive correlations between themselves and with IL-12p70 and IL-23. These correlations were not observed in QFT-negative or QFT-positive healthy volunteers. Activation with Mtb-soluble extract (a mixture of Mtb antigens and pathogen-associated molecular patterns [PAMPs]) increased the percentage of IFN-γ-/IL-17-producing NK cells and of IL-17-producing innate lymphoid cell 3 (ILC3) in the peripheral blood of active TB patients, but not of QFT-negative or QFT-positive healthy volunteers. Thus, active TB patients have both adaptive and innate lymphocyte subsets that produce characteristic cytokine profiles in response to Mtb-specific antigens or PAMPs. These profiles are not observed in uninfected individuals or in individuals with latent TB, suggesting that they are a response to active TB infection.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Antígenos de Bactérias , Citocinas , Humanos , Imunidade Inata , Interleucina-17 , Interleucina-23 , Interleucina-6 , Linfócitos , Moléculas com Motivos Associados a Patógenos , Fator de Necrose Tumoral alfa
5.
Front Immunol ; 12: 650779, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194428

RESUMO

Listeria monocytogenes (L.m) is efficiently controlled by several cells of the innate immunity, including the Mast Cell (MC). MC is activated by L.m inducing its degranulation, cytokine production and microbicidal mechanisms. TLR2 is required for the optimal control of L.m infection by different cells of the immune system. However, little is known about the MC receptors involved in recognizing this bacterium and whether these interactions mediate MC activation. In this study, we analyzed whether TLR2 is involved in mediating different MC activation responses during L.m infection. We found that despite MC were infected with L.m, they were able to clear the bacterial load. In addition, MC degranulated and produced ROS, TNF-α, IL-1ß, IL-6, IL-13 and MCP-1 in response to bacterial infection. Interestingly, L.m induced the activation of signaling proteins: ERK, p38 and NF-κB. When TLR2 was blocked, L.m endocytosis, bactericidal activity, ROS production and mast cell degranulation were not affected. Interestingly, only IL-6 and IL-13 production were affected when TLR2 was inhibited in response to L.m infection. Furthermore, p38 activation depended on TLR2, but not ERK or NF-κB activation. These results indicate that TLR2 mediates only some MC activation pathways during L.m infection, mainly those related to IL-6 and IL-13 production.


Assuntos
Interleucina-13/imunologia , Interleucina-6/imunologia , Listeria monocytogenes/imunologia , Mastócitos/imunologia , Receptor 2 Toll-Like/imunologia , Animais , Degranulação Celular/imunologia , Degranulação Celular/fisiologia , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Ativação Enzimática/imunologia , Interações Hospedeiro-Patógeno/imunologia , Interleucina-13/metabolismo , Interleucina-6/metabolismo , Listeria monocytogenes/fisiologia , Mastócitos/microbiologia , Mastócitos/fisiologia , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Receptor 2 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
J Leukoc Biol ; 108(3): 859-866, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32480423

RESUMO

Mast cell activation through the high-affinity IgE receptor (FcεRI) plays a central role in allergic reactions. FcεRI-mediated activation triggers multiple signaling pathways leading to degranulation and synthesis of different inflammatory mediators. IgE-mediated mast cell activation can be modulated by different molecules, including several drugs. Herein, we investigated the immunomodulatory activity of the histone deacetylase inhibitor valproic acid (VPA) on IgE-mediated mast cell activation. To this end, bone marrow-derived mast cells (BMMC) were sensitized with IgE and treated with VPA followed by FcεRI cross-linking. The results indicated that VPA reduced mast cell IgE-dependent degranulation and cytokine release. VPA also induced a significant reduction in the cell surface expression of FcεRI and CD117, but not other mast cell surface molecules. Interestingly, VPA treatment inhibited the phosphorylation of PLCγ2, a key signaling molecule involved in IgE-mediated degranulation and cytokine secretion. However, VPA did not affect the phosphorylation of other key components of the FcεRI signaling pathway, such as Syk, Akt, ERK1/2, or p38. Altogether, our data demonstrate that VPA affects PLCγ2 phosphorylation, which in turn decreases IgE-mediated mast cell activation. These results suggest that VPA might be a key modulator of allergic reactions and might be a promising therapeutic candidate.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Imunoglobulina E/imunologia , Mastócitos/efeitos dos fármacos , Fosfolipase C gama/antagonistas & inibidores , Receptores de IgE/efeitos dos fármacos , Ácido Valproico/farmacologia , Animais , Degranulação Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Interleucina-13/metabolismo , Interleucina-6/metabolismo , Mastócitos/citologia , Camundongos , Fosfolipase C gama/fisiologia , Receptores de IgE/biossíntese , Receptores de IgE/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
Int J Nanomedicine ; 14: 6707-6719, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31692512

RESUMO

BACKGROUND: Tuberculosis is the leading cause of death by an infectious microorganism worldwide. Conventional treatment lasts at least six months and has adverse effects; therefore, it is important to find therapeutic alternatives that reduce the bacterial load and may reduce the treatment duration. The immune response against tuberculosis can be modulated by several mechanisms, including extracellular vesicles (EVs), which are nano-sized membrane-bound structures that constitute an efficient communication mechanism among immune cells. METHODS: The EVs released by the J774A.1 mouse macrophage cell line, both spontaneously (S-EV) and after infection with Mycobacterium tuberculosis H37Rv (Mtb-EV), were purified by ultra-centrifugation and size-exclusion chromatography. The size distribution and chemical composition of these EVs were evaluated, and their effect on the bacterial load and the production of cytokines was determined in both in vitro and in vivo models of M. tuberculosis infection. RESULTS: Mtb-EV are larger than S-EV, they contain M. tuberculosis-specific antigens (not detected in EVs released from M. fortuitum-infected J774A.1 cells) and are rich in phosphatidylserine, present in their outer membrane layer. S-EV, but not Mtb-EV, reduced the bacterial load and the production of MCP-1 and TNF-α in M. tuberculosis-infected macrophages, and these effects were reversed when phosphatidylserine was blocked with annexin V. Both S-EV and Mtb-EV significantly reduced the lung bacterial load in mice infected with M. tuberculosis after 60 days of treatment, but they had no effect on survival or on the lung pneumonic area of these mice. CONCLUSION: J774A.1 macrophages infected with M. tuberculosis H37Rv released EVs that differed in size and phosphatidylserine content from spontaneously released EVs, and these EVs also had different biological effects: S-EV reduced the mycobacterial load and the cytokine production in vitro (through a phosphatidylserine-dependent mechanism), while both EVs reduced the lung bacterial load in vivo. These results are the basis for further experiments to evaluate whether EVs improve the efficiency of the conventional treatment for tuberculosis.


Assuntos
Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Tuberculose/terapia , Animais , Carga Bacteriana , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Vesículas Extracelulares/química , Vesículas Extracelulares/transplante , Masculino , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/patogenicidade , Tuberculose/microbiologia
8.
Molecules ; 24(19)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547184

RESUMO

Transferon® is a blood product with immunomodulatory properties constituted by a complex mixture of peptides obtained from a human dialyzable leukocyte extract (DLE). Due to its complex nature, it is necessary to demonstrate batch consistency in its biological activity. Potency is the quantitative measure of biological activity and is also a quality attribute of drugs. Here we developed and validated a proliferation assay using Jurkat cells exposed to azathioprine, which is intended to determine the potency of Transferon® according to international guidelines for pharmaceuticals. The assay showed a linear response (2.5 to 40 µg/mL), coefficients of variation from 0.7 to 13.6% demonstrated that the method is precise, while r2 = 0.97 between the nominal and measured values obtained from dilutional linearity showed that the method is accurate. We also demonstrated that the cell proliferation response was specific for Transferon® and was not induced by its vehicle nor by other peptide complex mixtures (glatiramer acetate or hydrolyzed collagen). The bioassay validated here was used to assess the relative potency of eight released batches of Transferon® with respect to a reference standard, showing consistent results. The collective information from the validation and the assessment of several batches indicate that the bioassay is suitable for the release of Transferon®.


Assuntos
Bioensaio/métodos , Proliferação de Células/efeitos dos fármacos , Humanos , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia
9.
J Immunol Res ; 2019: 2198508, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31093509

RESUMO

Transferon® is a complex drug based on a mixture of low molecular weight peptides. This biotherapeutic is employed as a coadjuvant in clinical trials of several diseases, including viral infections and allergies. Given that macrophages play key roles in pathogen recognition, phagocytosis, processing, and antigen presentation, we evaluated the effect of Transferon® on phenotype and function of macrophage-like cells derived from THP-1 monocytes. We determined the surface expression of CD80 and CD86 by flow cytometry and IL-1ß, TNF-α, and IL-6 levels by ELISA. Transferon® alone did not alter the steady state of PMA-differentiated macrophage-like THP-1 cells. On the contrary, simultaneous stimulation of cells with Transferon® and LPS elicited a significant increase in CD80 (P ≤ 0.001) and CD86 (P ≤ 0.001) expression, as well as in IL-6 production (P ≤ 0.05) compared to the LPS control. CD80 expression and IL-6 production exhibited a positive correlation (r = 0.6, P ≤ 0.05) in cells exposed to Transferon® and LPS. Our results suggest that the administration of Transferon® induces the expression of costimulatory molecules and the secretion of cytokines in LPS-activated macrophages. Further studies are necessary to determine the implication of these findings in the therapeutic properties of Transferon®.


Assuntos
Antígeno B7-1/genética , Interleucina-6/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Fator de Transferência/farmacologia , Antígeno B7-1/imunologia , Antígeno B7-2/genética , Antígeno B7-2/imunologia , Diferenciação Celular/efeitos dos fármacos , Citocinas/imunologia , Citometria de Fluxo , Humanos , Contagem de Leucócitos , Monócitos/efeitos dos fármacos , Células THP-1
10.
J Immunol Res ; 2019: 9678098, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001564

RESUMO

Valproic acid (VPA) is widely recognized for its use in the control of epilepsy and other neurological disorders in the past 50 years. Recent evidence has shown the potential of VPA in the control of certain cancers, owed in part to its role in modulating epigenetic changes through the inhibition of histone deacetylases, affecting the expression of genes involved in the cell cycle, differentiation, and apoptosis. The direct impact of VPA in cells of the immune system has only been explored recently. In this review, we discuss the effects of VPA in the suppression of some activation mechanisms in several immune cells that lead to an anti-inflammatory response. As expected, immune cells are not exempt from the effect of VPA, as it also affects the expression of genes of the cell cycle and apoptosis through epigenetic modifications. In addition to inhibiting histone deacetylases, VPA promotes RNA interference, activates histone methyltransferases, or represses the activation of transcription factors. However, during the infectious process, the effectiveness of VPA is subject to the biological nature of the pathogen and the associated immune response; this is because VPA can promote the control or the progression of the infection. Due to its various effects, VPA is a promising alternative for the control of autoimmune diseases and hypersensitivity and needs to be further explored.


Assuntos
Imunidade Adaptativa , Reposicionamento de Medicamentos , Imunidade Inata , Neoplasias/tratamento farmacológico , Ácido Valproico/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Epigênese Genética , Inibidores de Histona Desacetilases/administração & dosagem , Histona Desacetilases/metabolismo , Humanos , Camundongos , Interferência de RNA
11.
Tuberculosis (Edinb) ; 114: 123-126, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30711151

RESUMO

Tuberculosis is one of the leading causes of mortality worldwide, it is caused by Mycobacterium tuberculosis (Mtb), a bacteria that employs several strategies to evade the host immune response. For instance, Mtb interferes with the overexpression of class II transactivator (CIITA) in macrophages exposed to IFN-γ by inhibiting histone acetylation at its promoter, which can be reverted by the histone deacetylase inhibitor (HDACi) sodium butyrate. In this work, we evaluated whether a different HDACi, valproic acid (VPA), could revert the inhibition of gene expression induced by Mtb. J774 macrophages treated with VPA and IFN-γ unexpectedly induced a higher expression of the inducible nitric oxide synthase and a higher production of nitric oxide when exposed to the 19 kDa lipoprotein of Mtb or the whole bacteria. However, VPA was unable to revert the inhibition of CIITA expression induced by the 19 kDa lipoprotein of Mtb. Finally, macrophages infected with Mtb and treated with VPA and IFN-γ showed a significant reduction in intracellular bacteria. Our findings suggest a new therapeutic potential of VPA for the treatment of tuberculosis.


Assuntos
Interferon gama/imunologia , Macrófagos/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Óxido Nítrico/biossíntese , Ácido Valproico/farmacologia , Animais , Antituberculosos/farmacologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética
12.
Biomed Rep ; 10(2): 127-132, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30675352

RESUMO

Leprosy, a human chronic granulomatous disease caused by Mycobacterium leprae (M. leprae), remains endemic in certain countries despite the use of multidrug therapy. Recently, several host genes modulating the immune responses to M. leprae infection have been suggested to influence the acquisition and clinical course of leprosy. Lymphoid protein tyrosine phosphatase, encoded by the protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene, serves a negative regulatory role in T cell activation. The non-synonymous single-nucleotide polymorphism (SNP) rs2476601 (1858C>T) has been associated with autoimmune diseases. Here, the present study investigated if rs2476601 polymorphism was associated with leprosy in a Mexican mestizo population. Genotyping was performed in patients with leprosy (n=189) and control subjects (n=231) from regions with higher incidence of leprosy. Genotypic (P=0.44) and allelic frequencies (P=0.45) of the rs2476601 polymorphism were similar between patients and controls; genotypic frequencies were 91 vs. 94% for CC and 9 vs. 6% for CT, and the TT genotype was absent in both groups. Allelic frequencies were 96 vs. 97% for C, and 4 vs. 3% for T. In the same way, the genotypic (P=0.46) and allelic frequencies (P=0.47) from MB patients and controls were similar. In conclusion, there was a lack of association of the PTPN22 rs2476601 polymorphism with the development of leprosy, which suggests that this SNP was not a genetic risk factor for leprosy in the Mexican mestizo population studied.

13.
Front Immunol ; 9: 272, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29520273

RESUMO

Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb). In the lungs, macrophages and neutrophils are the first immune cells that have contact with the infecting mycobacteria. Neutrophils are phagocytic cells that kill microorganisms through several mechanisms, which include the lytic enzymes and antimicrobial peptides that are found in their lysosomes, and the production of reactive oxygen species. Neutrophils also release extracellular vesicles (EVs) (100-1,000 nm in diameter) to the extracellular milieu; these EVs consist of a lipid bilayer surrounding a hydrophilic core and participate in intercellular communication. We previously demonstrated that human neutrophils infected in vitro with Mtb H37Rv release EVs (EV-TB), but the effect of these EVs on other cells relevant for the control of Mtb infection, such as macrophages, has not been completely analyzed. In this study, we characterized the EVs produced by non-stimulated human neutrophils (EV-NS), and the EVs produced by neutrophils stimulated with an activator (PMA), a peptide derived from bacterial proteins (fMLF) or Mtb, and observed that the four EVs differed in their size. Ligands for toll-like receptor (TLR) 2/6 were detected in EV-TB, and these EVs favored a modest increase in the expression of the co-stimulatory molecules CD80, a higher expression of CD86, and the production of higher amounts of TNF-α and IL-6, and of lower amounts of TGF-ß, in autologous human macrophages, compared with the other EVs. EV-TB reduced the amount of intracellular Mtb in macrophages, and increased superoxide anion production in these cells. TLR2/6 ligation and superoxide anion production are known inducers of autophagy; accordingly, we found that EV-TB induced higher expression of the autophagy-related marker LC3-II in macrophages, and the co-localization of LC3-II with Mtb inside infected macrophages. The intracellular mycobacterial load increased when autophagy was inhibited with wortmannin in these cells. In conclusion, our results demonstrate that neutrophils produce different EVs in response to diverse activators, and that EV-TB activate macrophages and promote the clearance of intracellular Mtb through early superoxide anion production and autophagy induction, which is a novel role for neutrophil-derived EVs in the immune response to Mtb.


Assuntos
Vesículas Extracelulares/metabolismo , Macrófagos/fisiologia , Mycobacterium tuberculosis/fisiologia , Neutrófilos/imunologia , Tuberculose/imunologia , Autofagia , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Citocinas/metabolismo , Humanos , Espaço Intracelular , Ativação de Macrófagos , Proteínas Associadas aos Microtúbulos/metabolismo , Neutrófilos/microbiologia , Transporte Proteico
14.
J Immunotoxicol ; 14(1): 169-177, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28707490

RESUMO

Transferon, a human dialyzable leukocyte extract (hDLE), is a biotherapeutic that comprises a complex mixture of low-molecular-weight peptides (< 10 kDa) and is used to treat diseases with an inflammatory component. Some biotherapeutics, including those composed of peptides, can induce anti-drug antibodies (ADA) that block or diminish their therapeutic effect. Nevertheless, few studies have evaluated peptide-derived drug immunogenicity. In this study, the immunogenicity of Transferon was examined in a murine model during an immunization scheme using the following adjuvants: Al(OH)3, incomplete Freund's adjuvant (IFA), or Titermax Gold. The inoculation scheme entailed three routes of administration (intraperitoneal, Day 1; subcutaneous, Day 7; and intramuscular, Day 14) using 200 µg Transferon/inoculation. Serum samples were collected on Day 21. Total IgG levels were quantitated by affinity chromatography, and specific antibodies against components of Transferon were analyzed by dot-blot and ELISA. Ovalbumin (OVA, 44 kDa) and peptides from hydrolyzed collagen (PFHC, < 17 kDa) were used as positive and negative controls, respectively, in the same inoculation scheme and analyses for Transferon. OVA, PFHC, and Transferon increased total IgG concentrations in mice. However, only IgG antibodies against OVA were detected. Based on the results, it is concluded that Transferon does not induce generation of specific antibodies against its components in this model, regardless of adjuvant and route of administration. These results support the safety of Transferon by confirming its inability to induce ADA in this animal model.


Assuntos
Misturas Complexas/administração & dosagem , Fatores Imunológicos/administração & dosagem , Imunoterapia/métodos , Inflamação/terapia , Peptídeos/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Animais , Misturas Complexas/imunologia , Humanos , Imunoglobulina G/sangue , Fatores Imunológicos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Ovalbumina/imunologia , Peptídeos/imunologia
15.
J Immunol Res ; 2016: 4097642, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27847830

RESUMO

Reconstitution of the hematopoietic system during immune responses and immunological and neoplastic diseases or upon transplantation depends on the emergent differentiation of hematopoietic stem/progenitor cells within the bone marrow. Although in the last decade the use of dialyzable leukocyte extracts (DLE) as supportive therapy in both infectious and malignant settings has increased, its activity on the earliest stages of human hematopoietic development remains poorly understood. Here, we have examined the ability of DLE to promote replenishment of functional lymphoid lineages from CD34+ cells. Our findings suggest that DLE increases their differentiation toward a conspicuous CD56+CD16+CD11c+ NK-like cell population endowed with properties such as IFNy production, tumor cell cytotoxicity, and the capability of inducing γδ T lymphocyte proliferation. Of note, long-term coculture controlled systems showed the bystander effect of DLE-stromal cells by providing NK progenitors with signals to overproduce this cell subset. Thus, by direct effect on progenitor cells and through activation and remodeling of the supporting hematopoietic microenvironment, DLE may contribute a robust innate immune response by promoting the emerging lymphopoiesis of functional CD11c+ NK cells in a partially TLR-related manner. Unraveling the identity and mechanisms of the involved DLE components may be fundamental to advance the NK cell-based therapy field.


Assuntos
Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Linfopoese , Subpopulações de Linfócitos T/imunologia , Fator de Transferência/farmacologia , Antígeno CD11c/análise , Células Cultivadas , Técnicas de Cocultura , Células-Tronco Hematopoéticas/fisiologia , Humanos , Imunofenotipagem , Interferon gama/biossíntese , Células Matadoras Naturais/fisiologia , Receptores de Antígenos de Linfócitos T gama-delta , Células Estromais/fisiologia , Subpopulações de Linfócitos T/fisiologia
16.
Tuberculosis (Edinb) ; 100: 5-14, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27553405

RESUMO

Tuberculosis (TB), although a curable disease, remains a major cause of morbidity and mortality worldwide. It is necessary to develop a short-term therapy with reduced drug toxicity in order to improve adherence rate and control disease burden. Granulocyte-macrophage colony-stimulating factor (GM-CSF) may be a key cytokine in the treatment of pulmonary TB since it primes the activation and differentiation of myeloid and non-myeloid precursor cells, inducing the release of protective Th1 cytokines. In this work, we administrated by intratracheal route recombinant adenoviruses encoding GM-CSF (AdGM-CSF). This treatment produced significant bacterial elimination when administered in a single dose at 60 days of infection with drug sensitive or drug resistant Mtb strains in a murine model of progressive disease. Moreover, AdGM-CSF combined with primary antibiotics produced more rapid elimination of pulmonary bacterial burdens than conventional chemotherapy suggesting that this form of treatment could shorten the conventional treatment.


Assuntos
Terapia Genética/métodos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Tuberculose Resistente a Múltiplos Medicamentos/terapia , Tuberculose Pulmonar/terapia , Adenoviridae/genética , Animais , Antibióticos Antituberculose/uso terapêutico , Contagem de Colônia Microbiana , Terapia Combinada , Citocinas/biossíntese , Citocinas/genética , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica , Imunoterapia/métodos , Masculino , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/crescimento & desenvolvimento , RNA Mensageiro/genética , Tuberculose Resistente a Múltiplos Medicamentos/imunologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia
17.
Biomed Res Int ; 2015: 679850, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26064940

RESUMO

Individuals with X-HIGM syndrome fail to express functional CD40 ligand; consequently they cannot mount effective protective antibody responses against pathogenic bacteria. We evaluated, compared, and characterized the humoral immune response of wild type (WT) and C57-CD40L deficient (C57-CD40L(-/-)) mice infected with Citrobacter rodentium. Basal serum isotype levels were similar for IgM and IgG3 among mice, while total IgG and IgG2b concentrations were significantly lower in C57-CD40L(-/-) mice compared with WT. Essentially IgG1 and IgG2c levels were detectable only in WT mice. C57-CD40L(-/-) animals, orally inoculated with 2 × 10(9) CFU, presented several clinical manifestations since the second week of infection and eventually died. In contrast at this time point no clinical manifestations were observed among C57-CD40L(-/-) mice infected with 1 × 10(7) CFU. Infection was subclinical in WT mice inoculated with either bacterial dose. The serum samples from infected mice (1 × 10(7) CFU), collected at day 14 after infection, had similar C. rodentium-specific IgM titres. Although C57-CD40L(-/-) animals had lower IgG and IgG2b titres than WT mice, C57-CD40L(-/-) mice sera displayed complement-mediated bactericidal activity against C. rodentium. C. rodentium-infected C57-CD40L(-/-) mice are capable of producing antibodies that are protective. C57-CD40L(-/-) mouse is a useful surrogate model of X-HIGM syndrome for studying immune responses elicited against pathogens.


Assuntos
Antígenos CD40/biossíntese , Síndrome de Imunodeficiência com Hiper-IgM Tipo 1/imunologia , Imunidade Humoral/genética , Imunoglobulina M/imunologia , Animais , Antígenos CD40/imunologia , Citrobacter rodentium/patogenicidade , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Síndrome de Imunodeficiência com Hiper-IgM Tipo 1/genética , Síndrome de Imunodeficiência com Hiper-IgM Tipo 1/patologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Ligantes , Camundongos , Camundongos Knockout
18.
Mol Vis ; 21: 443-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25999672

RESUMO

BACKGROUND: Vernal keratoconjunctivitis (VKC) is a severe form of allergic conjunctivitis, in which inflammatory infiltrates of the conjunctiva are characterized by CD3+ and CD30+ cells. Until today, the functional involvement of CD30+ T cells in VKC was unclear. Our aim was to evaluate the functional characteristics of CD30+ T cells after allergen stimulation in peripheral blood mononuclear cells obtained from patients with VKC. METHODS: Seventeen consecutive patients at the Institute of Ophthalmology with active forms of VKC were included. RESULTS: After allergen stimulation, we observed the frequency of CD30+ T cells increased compared with non-stimulated cells (p<0.0001). The CD30+ T cells responded to the specific allergen-inducing expression of intracellular interleukin-4 (IL-4), IL-5, and interferon-gamma (IFN-γ) compared with the CD30- T cells (p<0.0001). Increased early secretion of soluble CD30 was observed in the supernatant of the cultured cells from patients with keratoconjunctivitis, compared with healthy controls (p=0.03). Blockage with IL-4 significantly diminished CD30 frequency in the allergen-stimulated cells. CONCLUSIONS: Our results suggest that after allergenic stimulation, CD4+CD30+ cells are the most important source of IL-4, IL-5, and IFN-γ. IL-4 acts as an activation loop that increases CD30 expression on T cells after specific stimulation. These findings suggest that CD4+CD30+ T cells are effector cells and play a significant role in the immune pathogenic response in patients with vernal keratoconjunctivitis.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Conjuntivite Alérgica/imunologia , Citocinas/metabolismo , Adolescente , Adulto , Alérgenos/administração & dosagem , Antígenos de Dermatophagoides/administração & dosagem , Linfócitos T CD4-Positivos/classificação , Estudos de Casos e Controles , Criança , Concanavalina A/administração & dosagem , Feminino , Humanos , Interferon gama/metabolismo , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Antígeno Ki-1/metabolismo , Masculino , Adulto Jovem
19.
Immunobiology ; 220(9): 1093-100, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26001731

RESUMO

Mast cells are crucial elements of the innate immune response. They reside in tissues that are commonly exposed to the external environment, such as the skin and mucosae, where they can rapidly detect the presence of pathogens and mount a potent inflammatory response that recruits other cellular effectors of the immune response. The contribution of mast cells to the immune response to viruses, bacteria, protozoa and multicellular parasites is well established, but there is scarce information about the role of these cells in fungal infections. In this study, we analyzed if mast cells are activated by Candida albicans and if the C-type lectin receptor Dectin-1 is involved in its recognition. We found that both yeasts and hyphae of C. albicans-induced mast cell degranulation and production of TNF-α, IL-6, IL-10, CCL3 and CCL4, while only yeasts were able to induce IL-1ß. Mast cells also produced ROS after stimulation with both dimorphic phases of C. albicans. When mast cells were activated with yeasts and hyphae, they showed decreased expression of IκBα and increased presence of phosphorylated Syk. Blockade of the receptor Dectin-1, but not Toll-like receptor 2, decreased TNF-α production by mast cell in response to C. albicans. These results indicate that mast cells are capable of sensing the two phases of C. albicans, and suggest that mast cells participate as an early inductor of inflammation during the early innate immune response to this fungus.


Assuntos
Candida albicans/imunologia , Degranulação Celular/imunologia , Inflamação/imunologia , Lectinas Tipo C/imunologia , Mastócitos/imunologia , Animais , Células Cultivadas , Quimiocina CCL3/biossíntese , Quimiocina CCL4/biossíntese , Hifas/imunologia , Quinase I-kappa B/metabolismo , Interleucina-10/biossíntese , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Fosforilação/imunologia , Proteínas Tirosina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Quinase Syk , Fator de Necrose Tumoral alfa/biossíntese , Leveduras/imunologia
20.
J Immunol Res ; 2015: 146305, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25984538

RESUMO

Human dialyzable leukocyte extracts (DLEs) are heterogeneous mixtures of low-molecular-weight peptides that are released on disruption of peripheral blood leukocytes from healthy donors. DLEs improve clinical responses in infections, allergies, cancer, and immunodeficiencies. Transferon is a human DLE that has been registered as a hemoderivate by Mexican health authorities and commercialized nationally. To develop an animal model that could be used routinely as a quality control assay for Transferon, we standardized and validated a murine model of cutaneous HSV-1 infection. Using this model, we evaluated the activity of 27 Transferon batches. All batches improved the survival of HSV-1-infected mice, wherein average survival rose from 20.9% in control mice to 59.6% in Transferon-treated mice. The activity of Transferon correlated with increased serum levels of IFN-γ and reduced IL-6 and TNF-α concentrations. Our results demonstrate that (i) this mouse model of cutaneous herpes can be used to examine the activity of DLEs, such as Transferon; (ii) the assay can be used as a routine test for batch release; (iii) Transferon is produced with high homogeneity between batches; (iv) Transferon does not have direct virucidal, cytoprotective, or antireplicative effects; and (v) the protective effect of Transferon in vivo correlates with changes in serum cytokines.


Assuntos
Extratos Celulares/farmacologia , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Leucócitos/metabolismo , Dermatopatias Virais/tratamento farmacológico , Animais , Bioensaio , Linhagem Celular , Chlorocebus aethiops , Modelos Animais de Doenças , Herpes Simples/virologia , Interferon gama/sangue , Interleucina-6/sangue , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dermatopatias Virais/virologia , Fator de Necrose Tumoral alfa/sangue , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA