Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7325, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957206

RESUMO

Challenging the basis of our chemical intuition, recent experimental evidence reveals the presence of a new type of intrinsic fluorescence in biomolecules that exists even in the absence of aromatic or electronically conjugated chemical compounds. The origin of this phenomenon has remained elusive so far. In the present study, we identify a mechanism underlying this new type of fluorescence in different biological aggregates. By employing non-adiabatic ab initio molecular dynamics simulations combined with a data-driven approach, we characterize the typical ultrafast non-radiative relaxation pathways active in non-fluorescent peptides. We show that the key vibrational mode for the non-radiative decay towards the ground state is the carbonyl elongation. Non-aromatic fluorescence appears to emerge from blocking this mode with strong local interactions such as hydrogen bonds. While we cannot rule out the existence of alternative non-aromatic fluorescence mechanisms in other systems, we demonstrate that this carbonyl-lock mechanism for trapping the excited state leads to the fluorescence yield increase observed experimentally, and set the stage for design principles to realize novel non-invasive biocompatible probes with applications in bioimaging, sensing, and biophotonics.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Fluorescência , Espectrometria de Fluorescência
2.
J Chem Inf Model ; 63(2): 595-604, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36630702

RESUMO

Cysteine is a common amino acid with a thiol group that plays a pivotal role in a variety of scenarios in redox biochemistry. In contrast, selenocysteine, the 21st amino acid, is only present in 25 human proteins. Classical force-field parameters for cysteine and selenocysteine are still scarce. In this context, we present a methodology to obtain Lennard-Jones parameters for cysteine and selenocysteine in different physiologically relevant oxidation and protonation states. The new force field parameters obtained in this work are available at https://github.com/MALBECC/AMBER-parameters-database. The parameters were adjusted to reproduce water radial distribution functions obtained by density functional theory ab initio molecular dynamics. We validated the results by evaluating the impact of the choice of parameters on the structure and dynamics in classical molecular dynamics simulations of representative proteins containing catalytic cysteine/selenocysteine residues. There are significant changes in protein structure and dynamics depending on the parameters choice, specifically affecting the residues close to the catalytic sites.


Assuntos
Cisteína , Selenocisteína , Humanos , Aminoácidos/química , Proteínas/química , Simulação de Dinâmica Molecular
3.
Front Mol Biosci ; 9: 975988, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213129

RESUMO

Persulfides (RSSH/RSS-) are species closely related to thiols (RSH/RS-) and hydrogen sulfide (H2S/HS-), and can be formed in biological systems in both low and high molecular weight cysteine-containing compounds. They are key intermediates in catabolic and biosynthetic processes, and have been proposed to participate in the transduction of hydrogen sulfide effects. Persulfides are acidic, more acidic than thiols, and the persulfide anions are expected to be the predominant species at neutral pH. The persulfide anion has high nucleophilicity, due in part to the alpha effect, i.e., the increased reactivity of a nucleophile when the neighboring atom has high electron density. In addition, persulfides have electrophilic character, a property that is absent in both thiols and hydrogen sulfide. In this article, the biochemistry of persulfides is described, and the possible ways in which the formation of a persulfide could impact on the properties of the biomolecule involved are discussed.

4.
Nucleic Acids Res ; 50(12): 6968-6979, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35736223

RESUMO

The non-structural protein 3 helicase (NS3h) is a multifunctional protein that is critical in RNA replication and other stages in the flavivirus life cycle. NS3h uses energy from ATP hydrolysis to translocate along single stranded nucleic acid and to unwind double stranded RNA. Here we present a detailed mechanistic analysis of the product release stage in the catalytic cycle of the dengue virus (DENV) NS3h. This study is based on a combined experimental and computational approach of product-inhibition studies and free energy calculations. Our results support a model in which the catalytic cycle of ATP hydrolysis proceeds through an ordered sequential mechanism that includes a ternary complex intermediate (NS3h-Pi-ADP), which evolves releasing the first product, phosphate (Pi), and subsequently ADP. Our results indicate that in the product release stage of the DENV NS3h a novel open-loop conformation plays an important role that may be conserved in NS3 proteins of other flaviviruses as well.


Assuntos
Vírus da Dengue , Vírus da Dengue/genética , Trifosfato de Adenosina
5.
Redox Biol ; 52: 102316, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35489241

RESUMO

Mycobacterium tuberculosis (Mtb) senses and responds to host-derived gasotransmitters NO and CO via heme-containing sensor kinases DosS and DosT and the response regulator DosR. Hydrogen sulfide (H2S) is an important signaling molecule in mammals, but its role in Mtb physiology is unclear. We have previously shown that exogenous H2S can modulate expression of genes in the Dos dormancy regulon via an unknown mechanism(s). Here, we test the hypothesis that Mtb senses and responds to H2S via the DosS/T/R system. Using UV-Vis and EPR spectroscopy, we show that H2S binds directly to the ferric (Fe3+) heme of DosS (KDapp = 5.30 µM) but not the ferrous (Fe2+) form. No interaction with DosT(Fe2+-O2) was detected. We found that the binding of sulfide can slowly reduce the DosS heme iron to the ferrous form. Steered Molecular Dynamics simulations show that H2S, and not the charged HS- species, can enter the DosS heme pocket. We also show that H2S increases DosS autokinase activity and subsequent phosphorylation of DosR, and H2S-mediated increases in Dos regulon gene expression is lost in Mtb lacking DosS. Finally, we demonstrate that physiological levels of H2S in macrophages can induce DosR regulon genes via DosS. Overall, these data reveal a novel mechanism whereby Mtb senses and responds to a third host gasotransmitter, H2S, via DosS(Fe3+). These findings highlight the remarkable plasticity of DosS and establish a new paradigm for how bacteria can sense multiple gasotransmitters through a single heme sensor kinase.


Assuntos
Gasotransmissores , Mycobacterium tuberculosis , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácido Dioctil Sulfossuccínico/metabolismo , Gasotransmissores/metabolismo , Regulação Bacteriana da Expressão Gênica , Heme/metabolismo , Ferro/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Protamina Quinase/química , Protamina Quinase/genética , Protamina Quinase/metabolismo , Regulon
6.
J Biol Chem ; 295(46): 15466-15481, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32873707

RESUMO

Persulfides (RSSH/RSS-) participate in sulfur trafficking and metabolic processes, and are proposed to mediate the signaling effects of hydrogen sulfide (H2S). Despite their growing relevance, their chemical properties are poorly understood. Herein, we studied experimentally and computationally the formation, acidity, and nucleophilicity of glutathione persulfide (GSSH/GSS-), the derivative of the abundant cellular thiol glutathione (GSH). We characterized the kinetics and equilibrium of GSSH formation from glutathione disulfide and H2S. A pKa of 5.45 for GSSH was determined, which is 3.49 units below that of GSH. The reactions of GSSH with the physiologically relevant electrophiles peroxynitrite and hydrogen peroxide, and with the probe monobromobimane, were studied and compared with those of thiols. These reactions occurred through SN2 mechanisms. At neutral pH, GSSH reacted faster than GSH because of increased availability of the anion and, depending on the electrophile, increased reactivity. In addition, GSS- presented higher nucleophilicity with respect to a thiolate with similar basicity. This can be interpreted in terms of the so-called α effect, i.e. the increased reactivity of a nucleophile when the atom adjacent to the nucleophilic atom has high electron density. The magnitude of the α effect correlated with the Brønsted nucleophilic factor, ßnuc, for the reactions with thiolates and with the ability of the leaving group. Our study constitutes the first determination of the pKa of a biological persulfide and the first examination of the α effect in sulfur nucleophiles, and sheds light on the chemical basis of the biological properties of persulfides.


Assuntos
Dissulfetos/química , Glutationa/análogos & derivados , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Dissulfetos/análise , Dissulfetos/metabolismo , Glutationa/análise , Glutationa/química , Glutationa/metabolismo , Peróxido de Hidrogênio/química , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Ácido Peroxinitroso/química , Teoria Quântica , Espectrometria de Massas em Tandem , Termodinâmica
7.
Biochim Biophys Acta Proteins Proteom ; 1868(8): 140441, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32371149

RESUMO

Dengue represents a substantial public health burden, particularly in low-resource countries. Non-structural protein 3 (NS3) is a multifunctional protein critical in the virus life cycle and has been identified as a promising anti-viral drug target. Despite recent crystallographic studies of the NS3 helicase domain, only subtle structural nucleotide-dependent differences have been identified, such that its coupled ATPase and helicase activities remain mechanistically unclear. Here we use molecular dynamics simulations to explore the nucleotide-dependent conformational landscape of the Dengue virus NS3 helicase and identify substantial changes in the protein flexibility during the ATP hydrolysis cycle. We relate these changes to the RNA-protein interactions and proposed translocation models for other monomeric helicases. Furthermore, we report a novel open-loop conformation with a likely escape route for Pi after hydrolysis, providing new insight into the conformational changes that underlie the ATPase activity of NS3.


Assuntos
Trifosfato de Adenosina/química , Vírus da Dengue/química , Fosfatos/química , Proteínas não Estruturais Virais/química , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Vírus da Dengue/enzimologia , Hidrólise , Simulação de Dinâmica Molecular , Fosfatos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Helicases/química , RNA Helicases/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Termodinâmica , Proteínas não Estruturais Virais/metabolismo
8.
Chem Rev ; 119(19): 10829-10855, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31498605

RESUMO

Life on Earth evolved in the presence of hydrogen peroxide, and other peroxides also emerged before and with the rise of aerobic metabolism. They were considered only as toxic byproducts for many years. Nowadays, peroxides are also regarded as metabolic products that play essential physiological cellular roles. Organisms have developed efficient mechanisms to metabolize peroxides, mostly based on two kinds of redox chemistry, catalases/peroxidases that depend on the heme prosthetic group to afford peroxide reduction and thiol-based peroxidases that support their redox activities on specialized fast reacting cysteine/selenocysteine (Cys/Sec) residues. Among the last group, glutathione peroxidases (GPxs) and peroxiredoxins (Prxs) are the most widespread and abundant families, and they are the leitmotif of this review. After presenting the properties and roles of different peroxides in biology, we discuss the chemical mechanisms of peroxide reduction by low molecular weight thiols, Prxs, GPxs, and other thiol-based peroxidases. Special attention is paid to the catalytic properties of Prxs and also to the importance and comparative outlook of the properties of Sec and its role in GPxs. To finish, we describe and discuss the current views on the activities of thiol-based peroxidases in peroxide-mediated redox signaling processes.


Assuntos
Peróxidos/química , Peroxirredoxinas/química , Animais , Catálise , Domínio Catalítico , Humanos , Peróxido de Hidrogênio/química , Cinética , Modelos Moleculares , Oxirredução , Peróxidos/metabolismo , Peroxirredoxinas/metabolismo , Estrutura Secundária de Proteína , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo
9.
Bioorg Med Chem Lett ; 29(16): 2197-2202, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31257083

RESUMO

The binding of ten quinoxaline compounds (1-10) to a site adjacent to S2 (AS2) of cruzain (CRZ) was evaluated by a protocol that include a first analysis through docking experiments followed by a second analysis using the Molecular Mechanics-Poisson-Boltzmann Surface Area method (MM-PBSA). Through them we demonstrated that quinoxaline compounds bearing substituents of different sizes at positions 3 or 4 of the heterocyclic ring might interact with the AS2, particularly interesting site for drug design. These compounds showed docking scores (ΔGdock) which were similar to those estimated for inhibitors that bind to the enzyme through non-covalent interactions. Nevertheless, the free binding energies (ΔG) values estimated by MM-PBSA indicated that the derivatives 8-10, which bear bulky substituents at position 3 of the heterocycle ring, became detached from the binding site under a dynamic study. Surprisingly, the evaluation of the inhibitory activity of cruzipain (CZ) of some derivatives showed that they increase the enzymatic activity. These results lead us to conclude about the relevance of AS2 as a pocket for compounds binding site, but not necessarily for the design of anti-chagasic compounds.


Assuntos
Cisteína Endopeptidases/química , Desenho de Fármacos , Proteínas de Protozoários/química , Quinoxalinas/química , Humanos , Ligantes
10.
Free Radic Res ; 53(1): 18-25, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30468096

RESUMO

Proteins are main targets of oxidants in biological systems. This oxidation may occur in the protein backbone as well as in certain amino acid side chains, depending on the oxidant and amino acid intrinsic reactivity. Moreover, many enzymes are capable of generating stable amino acid radicals, such as tyrosyl, tryptophanyl and cysteinyl radicals. These species react very rapidly (many times as diffusion-controlled reactions) with relevant cellular open-shell species such as nitric oxide (·NO) or molecular oxygen (O2). The exception to this apparent rule is tyrosyl radical, that reacts at diffusion rates with ·NO, but shows very slow reactivity towards O2 (rate constant <103 M-1 s-1). In this work, we provide a comparative molecular-level description of the reaction mechanisms involved in the reactions of tyrosyl, tryptophanyl and cysteinyl radicals towards ·NO and O2, through quantum mechanics simulations which allow us to obtain relevant energetic and structural parameters, proposing a molecular explanation to this tyrosyl discrimination capability, namely, its marginal reactivity with O2.


Assuntos
Cisteína/química , Teoria da Densidade Funcional , Óxido Nítrico/química , Oxigênio/química , Triptofano/química , Tirosina/química , Difusão , Radicais Livres/química , Estrutura Molecular , Oxirredução
11.
Arch Biochem Biophys ; 622: 9-25, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28412156

RESUMO

Tyrosine nitration is an oxidative post-translational modification that can occur in proteins associated to hydrophobic bio-structures such as membranes and lipoproteins. In this work, we have studied tyrosine nitration in membranes using a model system consisting of phosphatidylcholine liposomes with pre-incorporated tyrosine-containing 23 amino acid transmembrane peptides. Tyrosine residues were located at positions 4, 8 or 12 of the amino terminal, resulting in different depths in the bilayer. Tyrosine nitration was accomplished by exposure to peroxynitrite and a peroxyl radical donor or hemin in the presence of nitrite. In egg yolk phosphatidylcholine liposomes, nitration was highest for the peptide with tyrosine at position 8 and dramatically increased as a function of oxygen levels. Molecular dynamics studies support that the proximity of the tyrosine phenolic ring to the linoleic acid peroxyl radicals contributes to the efficiency of tyrosine oxidation. In turn, α-tocopherol inhibited both lipid peroxidation and tyrosine nitration. The mechanism of tyrosine nitration involves a "connecting reaction" by which lipid peroxyl radicals oxidize tyrosine to tyrosyl radical and was fully recapitulated by computer-assisted kinetic simulations. Altogether, this work underscores unique characteristics of the tyrosine oxidation and nitration process in lipid-rich milieu that is fueled via the lipid peroxidation process.


Assuntos
Membrana Celular/metabolismo , Radicais Livres/metabolismo , Peroxidação de Lipídeos , Peptídeos/metabolismo , Ácido Peroxinitroso/metabolismo , Tirosina/metabolismo , Amidinas/metabolismo , Sequência de Aminoácidos , Membrana Celular/química , Hemina/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Simulação de Dinâmica Molecular , Oxirredução , Oxigênio/metabolismo , Peptídeos/química , Tirosina/química
12.
Biochemistry ; 55(19): 2785-93, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27112409

RESUMO

Human indoleamine 2,3-dioxygenase catalyzes the oxidative cleavage of tryptophan to N-formyl kynurenine, the initial and rate-limiting step in the kynurenine pathway. Additionally, this enzyme has been identified as a possible target for cancer therapy. A 20-amino acid protein segment (the JK loop), which connects the J and K helices, was not resolved in the reported hIDO crystal structure. Previous studies have shown that this loop undergoes structural rearrangement upon substrate binding. In this work, we apply a combination of replica exchange molecular dynamics simulations and site-directed mutagenesis experiments to characterize the structure and dynamics of this protein region. Our simulations show that the JK loop can be divided into two regions: the first region (JK loop(C)) displays specific and well-defined conformations and is within hydrogen bonding distance of the substrate, while the second region (JK loop(N)) is highly disordered and exposed to the solvent. The peculiar flexible nature of JK loop(N) suggests that it may function as a target for post-translational modifications and/or a mediator for protein-protein interactions. In contrast, hydrogen bonding interactions are observed between the substrate and Thr379 in the highly conserved "GTGG" motif of JK loop(C), thereby anchoring JK loop(C) in a closed conformation, which secures the appropriate substrate binding mode for catalysis. Site-directed mutagenesis experiments confirm the key role of this residue, highlighting the importance of the JK loop(C) conformation in regulating the enzymatic activity. Furthermore, the existence of the partially and totally open conformations in the substrate-free form suggests a role of JK loop(C) in controlling substrate and product dynamics.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/química , Motivos de Aminoácidos , Catálise , Cristalografia por Raios X , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Mutagênese Sítio-Dirigida , Domínios Proteicos , Relação Estrutura-Atividade
13.
Biochim Biophys Acta ; 1851(12): 1577-86, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26434697

RESUMO

BACKGROUND: Liver X receptors (LXRs) are transcription factors activated by cholesterol metabolites containing an oxidized side chain. Due to their ability to regulate lipid metabolism and cholesterol transport, they have become attractive pharmacological targets. LXRs are closely related to DAF-12, a nuclear receptor involved in nematode lifespan and regulated by the binding of C-27 steroidal acids. Based on our recent finding that the lack of the C-25 methyl group does not abolish their DAF-12 activity, we evaluated the effect of removing it from the (25R)-cholestenoic acid, a LXR agonist. METHODS: The binding mode and the molecular basis of action of 27-nor-5-cholestenoic acid were evaluated using molecular dynamics simulations. The biological activity was investigated using reporter gene expression assays and determining the expression levels of endogenous target genes. The in vitro MARCoNI assay was used to analyze the interaction with cofactors. RESULTS: 27-Nor-5-cholestenoic acid behaves as an inverse agonist. This correlates with the capacity of the complex to better bind corepressors rather than coactivators. The C-25 methyl moiety would be necessary for the maintenance of a torsioned conformation of the steroid side chain that stabilizes an active LXRß state. CONCLUSION: We found that a 27-nor analog is able to act as a LXR ligand. Interestingly, this minimal structural change on the steroid triggered a drastic change in the LXR response. GENERAL SIGNIFICANCE: Results contribute to improve our understanding on the molecular basis of LXRß mechanisms of action and provide a new scaffold in the quest for selective LXR modulators.


Assuntos
Colestenos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores Nucleares Órfãos/antagonistas & inibidores , Receptores Nucleares Órfãos/metabolismo , Sítios de Ligação , Células HEK293 , Células Hep G2 , Humanos , Ligantes , Receptores X do Fígado , Receptores Nucleares Órfãos/genética
14.
Inorg Chem ; 54(2): 527-33, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25537304

RESUMO

The reactivity of inorganic sulfide species toward heme peptides was explored under biorelevant conditions in order to unravel the molecular details of the reactivity of the endogenous hydrogen sulfide toward heme proteins. Unlike ferric porphyrinates, which are reduced by inorganic sulfide, some heme proteins can form stable Fe(III)-sulfide adducts. To isolate the protein factors ruling the redox chemistry, we used as a system model, the undecapeptide microperoxidase (MP11), a heme peptide derived from cytochrome c proteolysis that retains the proximal histidine bound to the Fe(III) atom. Upon addition of gaseous hydrogen sulfide (H2S) at pH 6.8, the UV-vis spectra of MP11 closely resembled those of the low-spin ferric hydroxo complex (only attained at an alkaline pH) and cysteine or alkylthiol derivatives, suggesting that the Fe(III) reduction was prevented. The low-frequency region of the resonance Raman spectrum revealed the presence of an Fe(III)-S band at 366 cm(-1) and the general features of a low-spin hexacoordinated heme. Anhydrous sodium sulfide (Na2S) was the source of sulfide of choice for the kinetic evaluation of the process. Theoretical calculations showed no distal stabilization mechanisms for bound sulfide species in MP11, highlighting a key role of the proximal histidine for the stabilization of the Fe(III)-S adducts of heme compounds devoid of distal counterparts, which is significant with regard to the biochemical reactivity of endogenous hydrogen sulfide.


Assuntos
Hemeproteínas/metabolismo , Sulfeto de Hidrogênio/metabolismo , Peroxidases/metabolismo , Sulfetos/metabolismo , Hemeproteínas/química , Simulação de Dinâmica Molecular , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Peroxidases/química , Ligação Proteica , Conformação Proteica
15.
Chem Commun (Camb) ; 50(70): 10070-3, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25045760

RESUMO

Peroxiredoxins (Prxs) catalyze the reduction of peroxides, a process of key relevance in a variety of cellular processes. The first step in the catalytic cycle of all Prxs is the oxidation of a cysteine residue to sulfenic acid, which occurs 10(3)-10(7) times faster than in free cysteine. We present an experimental kinetics and hybrid QM/MM investigation to explore the reaction of Prxs with H2O2 using alkyl hydroperoxide reductase E from Mycobacterium tuberculosis as a Prx model. We report for the first time the thermodynamic activation parameters of H2O2 reduction using Prx, which show that protein significantly lowers the activation enthalpy, with an unfavourable entropic effect, compared to the uncatalyzed reaction. The QM/MM simulations show that the remarkable catalytic effects responsible for the fast H2O2 reduction in Prxs are mainly due to an active-site arrangement, which establishes a complex hydrogen bond network activating both reactive species.


Assuntos
Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Teoria Quântica , Compostos de Sulfidrila/metabolismo , Catálise , Peróxido de Hidrogênio/metabolismo , Oxirredução , Estrutura Secundária de Proteína
16.
Glycobiology ; 24(5): 428-41, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24451991

RESUMO

Galectin-1 (Gal-1), a member of a family of multifunctional lectins, plays key roles in diverse biological processes including cell signaling, immunomodulation, neuroprotection and angiogenesis. The presence of an unusual number of six cysteine residues within Gal-1 sequence prompted a detailed analysis of the impact of the redox environment on the functional activity of this lectin. We examined the role of each cysteine residue in the structure and function of Gal-1 using both experimental and computational approaches. Our results show that: (i) only three cysteine residues present in each carbohydrate recognition domain (CRD) (Cys2, Cys16 and Cys88) were important in protein oxidation, (ii) oxidation promoted the formation of the Cys16-Cys88 disulfide bond, as well as multimers through Cys2, (iii) the oxidized protein did not bind to lactose, probably due to poor interactions with Arg48 and Glu71, (iv) in vitro oxidation by air was completely reversible and (v) oxidation by hydrogen peroxide was relatively slow (1.7 ± 0.2 M(-1) s(-1) at pH 7.4 and 25°C). Finally, an analysis of key cysteines in other human galectins is also provided in order to predict their behaviour in response to redox variations. Collectively, our data provide new insights into the structural basis of Gal-1 redox regulation with critical implications in physiology and pathology.


Assuntos
Galectina 1/química , Peróxido de Hidrogênio/metabolismo , Simulação de Dinâmica Molecular , Humanos , Oxirredução , Estrutura Terciária de Proteína
17.
Biophys Rev ; 6(1): 27-46, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28509962

RESUMO

Thiol redox chemical reactions play a key role in a variety of physiological processes, mainly due to the presence of low-molecular-weight thiols and cysteine residues in proteins involved in catalysis and regulation. Specifically, the subtle sensitivity of thiol reactivity to the environment makes the use of simulation techniques extremely valuable for obtaining microscopic insights. In this work we review the application of classical and quantum-mechanical atomistic simulation tools to the investigation of selected relevant issues in thiol redox biochemistry, such as investigations on (1) the protonation state of cysteine in protein, (2) two-electron oxidation of thiols by hydroperoxides, chloramines, and hypochlorous acid, (3) mechanistic and kinetics aspects of the de novo formation of disulfide bonds and thiol-disulfide exchange, (4) formation of sulfenamides, (5) formation of nitrosothiols and transnitrosation reactions, and (6) one-electron oxidation pathways.

18.
Arch Biochem Biophys ; 539(1): 81-6, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24012807

RESUMO

Since peroxynitrite was identified as a pathophysiological agent it has been implicated in a great variety of cellular processes. Particularly, peroxynitrite mediated oxidation of cellular thiol-containing compounds such as Cys residues, is a key event which has been extensively studied. Although great advances have been accomplished, the reaction is not completely understood at the atomic level. Aiming to shed light on this subject, we present an integrated kinetic and theoretical study of the oxidation of free Cys by peroxynitrite. We determined pH-independent thermodynamic activation parameters, namely those corresponding to the reaction between the reactive species: Cys thiolate and peroxynitrous acid. We found a pH-independent activation energy of 8.2 ± 0.6 kcal/mol. Simulations were performed using state of the art hybrid quantum-classical (QM-MM) molecular dynamics simulations. Our results are consistent with a SN2 mechanism, with Cys sulfenic acid and nitrite anion as products. The activation barrier is mostly due to the alignment of sulfur's thiolate atom with the oxygen atoms of the peroxide, along with the concomitant charge reorganization and important changes in the solvation profile. This work provides an atomic detailed description of the reaction mechanism and a framework to understand the environment effects on peroxynitrite reactivity with protein thiols.


Assuntos
Cisteína/metabolismo , Simulação de Dinâmica Molecular , Ácido Peroxinitroso/metabolismo , Cisteína/química , Fluoretos , Cinética , Conformação Molecular , Oxirredução , Polietilenos , Teoria Quântica , Resinas Sintéticas
19.
Arch Biochem Biophys ; 525(1): 82-91, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22640642

RESUMO

Experimental studies in hemeproteins and model Tyr/Cys-containing peptides exposed to oxidizing and nitrating species suggest that intramolecular electron transfer (IET) between tyrosyl radicals (Tyr-O(·)) and Cys residues controls oxidative modification yields. The molecular basis of this IET process is not sufficiently understood with structural atomic detail. Herein, we analyzed using molecular dynamics and quantum mechanics-based computational calculations, mechanistic possibilities for the radical transfer reaction in Tyr/Cys-containing peptides in solution and correlated them with existing experimental data. Our results support that Tyr-O(·) to Cys radical transfer is mediated by an acid/base equilibrium that involves deprotonation of Cys to form the thiolate, followed by a likely rate-limiting transfer process to yield cysteinyl radical and a Tyr phenolate; proton uptake by Tyr completes the reaction. Both, the pKa values of the Tyr phenol and Cys thiol groups and the energetic and kinetics of the reversible IET are revealed as key physico-chemical factors. The proposed mechanism constitutes a case of sequential, acid/base equilibrium-dependent and solvent-mediated, proton-coupled electron transfer and explains the dependency of oxidative yields in Tyr/Cys peptides as a function of the number of alanine spacers. These findings contribute to explain oxidative modifications in proteins that contain sequence and/or spatially close Tyr-Cys residues.


Assuntos
Simulação por Computador , Cisteína/química , Peptídeos/química , Proteínas/química , Tirosina/química , Cisteína/metabolismo , Transporte de Elétrons , Radicais Livres/química , Cinética , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Proteínas/metabolismo , Teoria Quântica , Soluções , Tirosina/metabolismo , Água/química
20.
J Phys Chem B ; 116(4): 1401-13, 2012 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-22196056

RESUMO

Indoleamine 2,3-dioxygenase (IDO) and tryptophan dioxygenase (TDO) are two heme proteins that catalyze the oxidation reaction of tryptophan (Trp) to N-formylkynurenine (NFK). Human IDO (hIDO) has recently been recognized as a potent anticancer drug target, a fact that triggered intense research on the reaction and inhibition mechanisms of hIDO. Our recent studies revealed that the dioxygenase reaction catalyzed by hIDO and TDO is initiated by addition of the ferric iron-bound superoxide to the C(2)═C(3) bond of Trp to form a ferryl and Trp-epoxide intermediate, via a 2-indolenylperoxo radical transition state. The data demonstrate that the two atoms of dioxygen are inserted into the substrate in a stepwise fashion, challenging the paradigm of heme-based dioxygenase chemistry. In the current study, we used QM/MM methods to decipher the mechanism by which the second ferryl oxygen is inserted into the Trp-epoxide to form the NFK product in hIDO. Our results show that the most energetically favored pathway involves proton transfer from Trp-NH(3)(+) to the epoxide oxygen, triggering epoxide ring opening and a concerted nucleophilic attack of the ferryl oxygen to the C(2) of Trp that leads to a metastable reaction intermediate. This intermediate subsequently converts to NFK, following C(2)-C(3) bond cleavage and the associated back proton transfer from the oxygen to the amino group of Trp. A comparative study with Xantomonas campestris TDO (xcTDO) indicates that the reaction follows a similar pathway, although subtle differences distinguishing the two enzyme reactions are evident. The results underscore the importance of the NH(3)(+) group of Trp in the two-step ferryl-based mechanism of hIDO and xcTDO, by acting as an acid catalyst to facilitate the epoxide ring-opening reaction and ferryl oxygen addition to the indole ring.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/química , Teoria Quântica , Compostos de Epóxi/química , Éteres Cíclicos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/análogos & derivados , Cinurenina/química , Modelos Moleculares , Conformação Molecular , Oxigênio/química , Prótons , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA