Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Hum Genomics ; 17(1): 64, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454130

RESUMO

BACKGROUND: Female breast cancer remains the second leading cause of cancer-related death in the USA. The heterogeneity in the tumor morphology across the cohort and within patients can lead to unpredictable therapy resistance, metastasis, and clinical outcome. Hence, supplementing classic pathological markers with intrinsic tumor molecular markers can help identify novel molecular subtypes and the discovery of actionable biomarkers. METHODS: We conducted a large multi-institutional genomic analysis of paired normal and tumor samples from breast cancer patients to profile the complex genomic architecture of breast tumors. Long-term patient follow-up, therapeutic regimens, and treatment response for this cohort are documented using the Breast Cancer Collaborative Registry. The majority of the patients in this study were at tumor stage 1 (51.4%) and stage 2 (36.3%) at the time of diagnosis. Whole-exome sequencing data from 554 patients were used for mutational profiling and identifying cancer drivers. RESULTS: We identified 54 tumors having at least 1000 mutations and 185 tumors with less than 100 mutations. Tumor mutational burden varied across the classified subtypes, and the top ten mutated genes include MUC4, MUC16, PIK3CA, TTN, TP53, NBPF10, NBPF1, CDC27, AHNAK2, and MUC2. Patients were classified based on seven biological and tumor-specific parameters, including grade, stage, hormone receptor status, histological subtype, Ki67 expression, lymph node status, race, and mutational profiles compared across different subtypes. Mutual exclusion of mutations in PIK3CA and TP53 was pronounced across different tumor grades. Cancer drivers specific to each subtype include TP53, PIK3CA, CDC27, CDH1, STK39, CBFB, MAP3K1, and GATA3, and mutations associated with patient survival were identified in our cohort. CONCLUSIONS: This extensive study has revealed tumor burden, driver genes, co-occurrence, mutual exclusivity, and survival effects of mutations on a US Midwestern breast cancer cohort, paving the way for developing personalized therapeutic strategies.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Prognóstico , Mutação , Biomarcadores Tumorais/genética , Classe I de Fosfatidilinositol 3-Quinases/genética
2.
Mol Cell Endocrinol ; 574: 111971, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37301504

RESUMO

Follicle-stimulating hormone (FSH) is a glycoprotein that is assembled as a heterodimer of α/ß subunits in gonadotropes. Each subunit contains two N-glycan chains. Our previous in vivo genetic studies identified that at least one N-glycan chain must be present on the FSHß subunit for efficient FSH dimer assembly and secretion. Moreover, macroheterogeneity observed uniquely on human FSHß results in ratiometric changes in age-specific FSH glycoforms, particularly during menopausal transition. Despite the recognition of many prominent roles of sugars on FSH including dimer assembly and secretion, serum half-life, receptor binding and signal transduction, the N-glycosylation machinery in gonadotropes has never been defined. Here, we used a mouse model in which gonadotropes are GFP-labeled in vivo and achieved rapid purification of GFP+ gonadotropes from pituitaries of female mice at reproductively young, middle, and old ages. We identified by RNA-seq analysis 52 mRNAs encoding N-glycosylation pathway enzymes expressed in 3- and 8-10-month-old mouse gonadotropes. We hierarchically mapped and localized the enzymes to distinct subcellular organelles within the N-glycosylation biosynthetic pathway. Of the 52 mRNAs, we found 27 mRNAs are differentially expressed between the 3- and 8-10-month old mice. We subsequently selected 8 mRNAs which showed varying changes in expression for confirmation of abundance in vivo via qPCR analysis, using more expanded aging time points with distinct 8-month and 14-month age groups. Real time qPCR analysis indicated dynamic changes in expression of N-glycosylation pathway enzyme-encoding mRNAs across the life span. Notably, computational analysis predicted the promoters of genes encoding these 8 mRNAs contain multiple high probability binding sites for estrogen receptor-1 and progesterone receptor. Collectively, our studies define the N-glycome and identify age-specific dynamic changes in mRNAs encoding N-glycosylation pathway enzymes in mouse gonadotropes. Our studies suggest the age-related decline in ovarian steroids may regulate expression of N-glycosylation enzymes in mouse gonadotropes and explain the age-related N-glycosylation shift previously observed on human FSHß subunit in pituitaries of women.


Assuntos
Subunidade beta do Hormônio Folículoestimulante , Hormônio Foliculoestimulante , Camundongos , Feminino , Humanos , Animais , Lactente , Glicosilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Subunidade beta do Hormônio Folículoestimulante/genética , Subunidade alfa de Hormônios Glicoproteicos/genética , Hormônio Foliculoestimulante Humano , Análise de Sequência de RNA
3.
Hum Reprod ; 36(7): 1891-1906, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34059912

RESUMO

STUDY QUESTION: Does hypo-glycosylated human recombinant FSH (hFSH18/21) have greater in vivo bioactivity that drives follicle development in vivo compared to fully-glycosylated human recombinant FSH (hFSH24)? SUMMARY ANSWER: Compared with fully-glycosylated hFSH, hypo-glycosylated hFSH has greater bioactivity, enabling greater follicular health and growth in vivo, with enhanced transcriptional activity, greater activation of receptor tyrosine kinases (RTKs) and elevated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling. WHAT IS KNOWN ALREADY: Glycosylation of FSH is necessary for FSH to effectively activate the FSH receptor (FSHR) and promote preantral follicular growth and formation of antral follicles. In vitro studies demonstrate that compared to fully-glycosylated recombinant human FSH, hypo-glycosylated FSH has greater activity in receptor binding studies, and more effectively stimulates the PKA pathway and steroidogenesis in human granulosa cells. STUDY DESIGN, SIZE, DURATION: This is a cross-sectional study evaluating the actions of purified recombinant human FSH glycoforms on parameters of follicular development, gene expression and cell signaling in immature postnatal day (PND) 17 female CD-1 mice. To stimulate follicle development in vivo, PND 17 female CD-1 mice (n = 8-10/group) were treated with PBS (150 µl), hFSH18/21 (1 µg/150 µl PBS) or hFSH24 (1 µg/150 µl PBS) by intraperitoneal injection (i.p.) twice daily (8:00 a.m. and 6:00 p.m.) for 2 days. Follicle numbers, serum anti-Müllerian hormone (AMH) and estradiol levels, and follicle health were quantified. PND 17 female CD-1 mice were also treated acutely (2 h) in vivo with PBS, hFSH18/21 (1 µg) or hFSH24 (1 µg) (n = 3-4/group). One ovary from each mouse was processed for RNA sequencing analysis and the other ovary processed for signal transduction analysis. An in vitro ovary culture system was used to confirm the relative signaling pathways. PARTICIPANTS/MATERIALS, SETTING, METHODS: The purity of different recombinant hFSH glycoforms was analyzed using an automated western blot system. Follicle numbers were determined by counting serial sections of the mouse ovary. Real-time quantitative RT-PCR, western blot and immunofluorescence staining were used to determine growth and apoptosis markers related with follicle health. RNA sequencing and bioinformatics were used to identify pathways and processes associated with gene expression profiles induced by acute FSH glycoform treatment. Analysis of RTKs was used to determine potential FSH downstream signaling pathways in vivo. Western blot and in vitro ovarian culture system were used to validate the relative signaling pathways. MAIN RESULTS AND THE ROLE OF CHANCE: Our present study shows that both hypo- and fully-glycosylated recombinant human FSH can drive follicular growth in vivo. However, hFSH18/21 promoted development of significantly more large antral follicles compared to hFSH24 (P < 0.01). In addition, compared with hFSH24, hFSH18/21 also promoted greater indices of follicular health, as defined by lower BAX/BCL2 ratios and reduced cleaved Caspase 3. Following acute in vivo treatment with FSH glycoforms RNA-sequencing data revealed that both FSH glycoforms rapidly induced ovarian transcription in vivo, but hypo-glycosylated FSH more robustly stimulated Gαs and cAMP-mediated signaling and members of the AP-1 transcription factor complex. Moreover, hFSH18/21 treatment induced significantly greater activation of RTKs, PI3K/AKT and MAPK/ERK signaling compared to hFSH24. FSH-induced indices of follicle growth in vitro were blocked by inhibition of PI3K and MAPK. LARGE SCALE DATA: RNA sequencing of mouse ovaries. Data will be shared upon reasonable request to the corresponding author. LIMITATIONS, REASONS FOR CAUTION: The observations that hFSH glycoforms have different bioactivities in the present study employing a mouse model of follicle development should be verified in nonhuman primates. The gene expression studies reflect transcriptomes of whole ovaries. WIDER IMPLICATIONS OF THE FINDINGS: Commercially prepared recombinant human FSH used for ovarian stimulation in human ART is fully-glycosylated FSH. Our findings that hypo-glycosylated hFSH has greater bioactivity enabling greater follicular health and growth without exaggerated estradiol production in vivo, demonstrate the potential for its development for application in human ART. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by NIH 1P01 AG029531, NIH 1R01 HD 092263, VA I01 BX004272, and the Olson Center for Women's Health. JSD is the recipient of a VA Senior Research Career Scientist Award (1IK6 BX005797). This work was also partially supported by National Natural Science Foundation of China (No. 31872352). The authors declared there are no conflicts of interest.


Assuntos
Hormônio Foliculoestimulante Humano , Proteínas Quinases Ativadas por Mitógeno , Folículo Ovariano/crescimento & desenvolvimento , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Animais , China , Estudos Transversais , Feminino , Glicosilação , Camundongos , Proteínas Recombinantes
4.
PLoS One ; 16(2): e0240707, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33577605

RESUMO

Rheumatoid arthritis (RA)-associated lung disease is a leading cause of mortality in RA, yet the mechanisms linking lung disease and RA remain unknown. Using an established murine model of RA-associated lung disease combining collagen-induced arthritis (CIA) with organic dust extract (ODE)-induced airway inflammation, differences among lung immune cell populations were analyzed by single cell RNA-sequencing. Additionally, four lung myeloid-derived immune cell populations including macrophages, monocytes/macrophages, monocytes, and neutrophils were isolated by fluorescence cell sorting and gene expression was determined by NanoString analysis. Unsupervised clustering revealed 14 discrete clusters among Sham, CIA, ODE, and CIA+ODE treatment groups: 3 neutrophils (inflammatory, resident/transitional, autoreactive/suppressor), 5 macrophages (airspace, differentiating/recruited, recruited, resident/interstitial, and proliferative airspace), 2 T-cells (differentiating and effector), and a single cluster each of inflammatory monocytes, dendritic cells, B-cells and natural killer cells. Inflammatory monocytes, autoreactive/suppressor neutrophils, and recruited/differentiating macrophages were predominant with arthritis induction (CIA and CIA+ODE). By specific lung cell isolation, several interferon-related and autoimmune genes were disproportionately expressed among CIA and CIA+ODE (e.g. Oasl1, Oas2, Ifit3, Gbp2, Ifi44, and Zbp1), corresponding to RA and RA-associated lung disease. Monocytic myeloid-derived suppressor cells were reduced, while complement genes (e.g. C1s1 and Cfb) were uniquely increased in CIA+ODE mice across cell populations. Recruited and inflammatory macrophages/monocytes and neutrophils expressing interferon-, autoimmune-, and complement-related genes might contribute towards pro-fibrotic inflammatory lung responses following airborne biohazard exposures in setting of autoimmune arthritis and could be predictive and/or targeted to reduce disease burden.


Assuntos
Artrite Reumatoide/fisiopatologia , Poeira/imunologia , Pulmão/imunologia , Animais , Artrite Experimental/imunologia , Artrite Reumatoide/complicações , Artrite Reumatoide/metabolismo , Doenças Autoimunes/metabolismo , Modelos Animais de Doenças , Ensaios de Triagem em Larga Escala/métodos , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Pneumopatias/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos DBA , Monócitos/metabolismo , Células Supressoras Mieloides/metabolismo , Neutrófilos/metabolismo
5.
J Extracell Vesicles ; 10(4): e12069, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33613874

RESUMO

Honey has been used as a nutrient, an ointment, and a medicine worldwide for many centuries. Modern research has demonstrated that honey has many medicinal properties, reflected in its anti-microbial, anti-oxidant, and anti-inflammatory bioactivities. Honey is composed of sugars, water and a myriad of minor components, including minerals, vitamins, proteins and polyphenols. Here, we report a new bioactive component‒vesicle-like nanoparticles‒in honey (H-VLNs). These H-VLNs are membrane-bound nano-scale particles that contain lipids, proteins and small-sized RNAs. The presence of plant-originated plasma transmembrane proteins and plasma membrane-associated proteins suggests the potential vesicle-like nature of these particles. H-VLNs impede the formation and activation of the nucleotide-binding domain and leucine-rich repeat related (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome, which is a crucial inflammatory signalling platform in the innate immune system. Intraperitoneal administration of H-VLNs in mice alleviates inflammation and liver damage in the experimentally induced acute liver injury. miR-4057 in H-VLNs was identified in inhibiting NLRP3 inflammasome activation. Together, our studies have identified anti-inflammatory VLNs as a new bioactive agent in honey.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Mel/análise , Inflamassomos/metabolismo , Inflamação/metabolismo , MicroRNAs/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nanopartículas/química , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Abelhas/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Vesículas Extracelulares/química , Imunidade Inata , Proteínas de Insetos/análise , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Nanopartículas/ultraestrutura , Proteínas de Plantas/análise , Proteômica , Transdução de Sinais
6.
J Circadian Rhythms ; 17: 6, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31303884

RESUMO

INTRODUCTION: Women diagnosed with breast cancer (BC) are at increased risk of sleep deficiency. Approximately 30-60% of these women report poor sleep during and following surgery, chemotherapy, radiation therapy, and anti-estrogen therapy. The purpose of this study was to examine the relationship between genetic variation in circadian rhythm genes and self-reported sleep quality in women with BC. METHODS: This cross-sectional study recruited women with a first diagnosis of breast cancer at five sites in Nebraska and South Dakota. Sixty women were included in the study. Twenty-six circadian genes were selected for exome sequencing using the Nextera Rapid Capture Expanded Exome kit. 414 variants had a minor allele frequency of ≥5% and were included in the exploratory analysis. The association between Pittsburgh Sleep Quality Index (PSQI) score and genetic variants was determined by two-sample t-test or ANOVA. RESULTS: Twenty-five variants were associated with the PSQI score at p < 0.10, of which 19 were significant at p<0.05, although the associations did not reach statistical significance after adjustment for multiple comparisons. Variants associated with PSQI were from genes CSNK1D & E, SKP1, BHLHE40 & 41, NPAS2, ARNTL, MYRIP, KLHL30, TIMELESS, FBXL3, CUL1, PER1&2, RORB. Two genetic variants were synonymous or missense variants in the BHLHE40 and TIMELESS genes, respectively. CONCLUSIONS: These exploratory results demonstrate an association of genetic variants in circadian rhythm pathways with self-reported sleep in women with BC. Testing this association is warranted in a larger replication population.

7.
Virology ; 505: 71-79, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28237765

RESUMO

Sensory neurons are a primary site for life-long latency of bovine herpesvirus 1 (BoHV-1). The synthetic corticosteroid dexamethasone induces reactivation from latency and productive infection, in part because the BoHV-1 genome contains more than 100 glucocorticoid receptor (GR) responsive elements (GREs). Two GREs in the immediate early transcription unit 1 promoter are required for dexamethasone induction. Recent studies also demonstrated that the serum and glucocorticoid receptor protein kinase (SGK) family stimulated BoHV-1 replication. Consequently, we hypothesized that dexamethasone influences several aspects of productive infection. In this study, we demonstrated that dexamethasone increased expression of the immediate early protein bICP4, certain late transcripts, and UL23 (thymidine kinase) by four hours after infection. SGK1 expression and Akt phosphorylation were also stimulated during early stages of infection and dexamethasone treatment further increased this effect. These studies suggest that stress, as mimicked by dexamethasone treatment, has the potential to stimulate productive infection by multiple pathways.


Assuntos
Dexametasona/farmacologia , Glucocorticoides/farmacologia , Infecções por Herpesviridae/induzido quimicamente , Herpesvirus Bovino 1/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas do Envelope Viral/biossíntese , Ativação Viral/efeitos dos fármacos , Animais , Bovinos , Células Cultivadas , Fosforilação , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Glucocorticoides/genética , Latência Viral/fisiologia
8.
PLoS Genet ; 9(9): e1003736, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039593

RESUMO

Genetic information should be accurately transmitted from cell to cell; conversely, the adaptation in evolution and disease is fueled by mutations. In the case of cancer development, multiple genetic changes happen in somatic diploid cells. Most classic studies of the molecular mechanisms of mutagenesis have been performed in haploids. We demonstrate that the parameters of the mutation process are different in diploid cell populations. The genomes of drug-resistant mutants induced in yeast diploids by base analog 6-hydroxylaminopurine (HAP) or AID/APOBEC cytosine deaminase PmCDA1 from lamprey carried a stunning load of thousands of unselected mutations. Haploid mutants contained almost an order of magnitude fewer mutations. To explain this, we propose that the distribution of induced mutation rates in the cell population is uneven. The mutants in diploids with coincidental mutations in the two copies of the reporter gene arise from a fraction of cells that are transiently hypersensitive to the mutagenic action of a given mutagen. The progeny of such cells were never recovered in haploids due to the lethality caused by the inactivation of single-copy essential genes in cells with too many induced mutations. In diploid cells, the progeny of hypersensitive cells survived, but their genomes were saturated by heterozygous mutations. The reason for the hypermutability of cells could be transient faults of the mutation prevention pathways, like sanitization of nucleotide pools for HAP or an elevated expression of the PmCDA1 gene or the temporary inability of the destruction of the deaminase. The hypothesis on spikes of mutability may explain the sudden acquisition of multiple mutational changes during evolution and carcinogenesis.


Assuntos
Citosina Desaminase/genética , Diploide , Haploidia , Taxa de Mutação , Desaminase APOBEC-1 , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Genoma Fúngico/efeitos dos fármacos , Humanos , Lampreias/metabolismo , Mutagênese/efeitos dos fármacos , Mutação/genética , Saccharomyces cerevisiae/efeitos dos fármacos
9.
J Biol Chem ; 287(35): 29442-56, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22736770

RESUMO

Ada3 protein is an essential component of histone acetyl transferase containing coactivator complexes conserved from yeast to human. We show here that germline deletion of Ada3 in mouse is embryonic lethal, and adenovirus-Cre mediated conditional deletion of Ada3 in Ada3(FL/FL) mouse embryonic fibroblasts leads to a severe proliferation defect which was rescued by ectopic expression of human Ada3. A delay in G(1) to S phase of cell cycle was also seen that was due to accumulation of Cdk inhibitor p27 which was an indirect effect of c-myc gene transcription control by Ada3. We further showed that this defect could be partially reverted by knocking down p27. Additionally, drastic changes in global histone acetylation and changes in global gene expression were observed in microarray analyses upon loss of Ada3. Lastly, formation of abnormal nuclei, mitotic defects and delay in G(2)/M to G(1) transition was seen in Ada3 deleted cells. Taken together, we provide evidence for a critical role of Ada3 in embryogenesis and cell cycle progression as an essential component of HAT complex.


Assuntos
Ciclo Celular/fisiologia , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fatores de Transcrição/metabolismo , Acetilação , Animais , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Camundongos Knockout , Fatores de Transcrição/genética
10.
J Virol ; 86(5): 2459-73, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22190728

RESUMO

Bovine herpesvirus 1 (BHV-1), an alphaherpesvirinae subfamily member, establishes latency in sensory neurons. Elevated corticosteroid levels, due to stress, reproducibly triggers reactivation from latency in the field. A single intravenous injection of the synthetic corticosteroid dexamethasone (DEX) to latently infected calves consistently induces reactivation from latency. Lytic cycle viral gene expression is detected in sensory neurons within 6 h after DEX treatment of latently infected calves. These observations suggested that DEX stimulated expression of cellular genes leads to lytic cycle viral gene expression and productive infection. In this study, a commercially available assay-Bovine Gene Chip-was used to compare cellular gene expression in the trigeminal ganglia (TG) of calves latently infected with BHV-1 versus DEX-treated animals. Relative to TG prepared from latently infected calves, 11 cellular genes were induced more than 10-fold 3 h after DEX treatment. Pentraxin three, a regulator of innate immunity and neurodegeneration, was stimulated 35- to 63-fold after 3 or 6 h of DEX treatment. Two transcription factors, promyelocytic leukemia zinc finger (PLZF) and Slug were induced more than 15-fold 3 h after DEX treatment. PLZF or Slug stimulated productive infection 20- or 5-fold, respectively, and Slug stimulated the late glycoprotein C promoter more than 10-fold. Additional DEX-induced transcription factors also stimulated productive infection and certain viral promoters. These studies suggest that DEX-inducible cellular transcription factors and/or signaling pathways stimulate lytic cycle viral gene expression, which subsequently leads to successful reactivation from latency in a small subset of latently infected neurons.


Assuntos
Doenças dos Bovinos/genética , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 1/fisiologia , Fatores de Transcrição/genética , Gânglio Trigeminal/metabolismo , Ativação Viral/efeitos dos fármacos , Latência Viral , Animais , Bovinos , Doenças dos Bovinos/metabolismo , Doenças dos Bovinos/virologia , Linhagem Celular , Dexametasona/farmacologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/efeitos dos fármacos , Herpesvirus Bovino 1/genética , Camundongos , Regiões Promotoras Genéticas/efeitos dos fármacos , Coelhos , Fatores de Transcrição/metabolismo , Gânglio Trigeminal/virologia , Regulação para Cima , Latência Viral/efeitos dos fármacos
11.
PLoS One ; 6(7): e22628, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21818355

RESUMO

Interferon regulatory factor 4 (IRF4) is a critical transcriptional regulator in B cell development and function. We have previously shown that IRF4, together with IRF8, orchestrates pre-B cell development by limiting pre-B cell expansion and by promoting pre-B cell differentiation. Here, we report that IRF4 suppresses c-Myc induced leukemia in EµMyc mice. Our results show that c-Myc induced leukemia was greatly accelerated in the IRF4 heterozygous mice (IRF4(+/-)Myc); the average age of mortality in the IRF4(+/-)Myc mice was only 7 to 8 weeks but was 20 weeks in the control mice. Our results show that IRF4(+/-)Myc leukemic cells were derived from large pre-B cells and were hyperproliferative and resistant to apoptosis. Further analysis revealed that the majority of IRF4(+/-)Myc leukemic cells inactivated the wild-type IRF4 allele and contained defects in Arf-p53 tumor suppressor pathway. p27(kip) is part of the molecular circuitry that controls pre-B cell expansion. Our results show that expression of p27(kip) was lost in the IRF4(+/-)Myc leukemic cells and reconstitution of IRF4 expression in those cells induced p27(kip) and inhibited their expansion. Thus, IRF4 functions as a classical tumor suppressor to inhibit c-Myc induced B cell leukemia in EµMyc mice.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Leucemia de Células B/metabolismo , Leucemia de Células B/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Imunoglobulina M/metabolismo , Leucemia de Células B/sangue , Antígenos Comuns de Leucócito/metabolismo , Contagem de Linfócitos , Camundongos , Transplante de Neoplasias , Células Precursoras de Linfócitos B/metabolismo , Células Precursoras de Linfócitos B/patologia , Transdução de Sinais , Proteína Supressora de Tumor p14ARF/metabolismo , Proteína Supressora de Tumor p53/metabolismo
12.
Proc Natl Acad Sci U S A ; 107(32): 14146-51, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20660721

RESUMO

There is increasing evidence that breast and other cancers originate from and are maintained by a small fraction of stem/progenitor cells with self-renewal properties. Whether such cancer stem/progenitor cells originate from normal stem cells based on initiation of a de novo stem cell program, by reprogramming of a more differentiated cell type by oncogenic insults, or both remains unresolved. A major hurdle in addressing these issues is lack of immortal human stem/progenitor cells that can be deliberately manipulated in vitro. We present evidence that normal and human telomerase reverse transcriptase (hTERT)-immortalized human mammary epithelial cells (hMECs) isolated and maintained in Dana-Farber Cancer Institute 1 (DFCI-1) medium retain a fraction with progenitor cell properties. These cells coexpress basal (K5, K14, and vimentin), luminal (E-cadherin, K8, K18, or K19), and stem/progenitor (CD49f, CD29, CD44, and p63) cell markers. Clonal derivatives of progenitors coexpressing these markers fall into two distinct types--a K5(+)/K19(-) type and a K5(+)/K19(+) type. We show that both types of progenitor cells have self-renewal and differentiation ability. Microarray analyses confirmed the differential expression of components of stem/progenitor-associated pathways, such as Notch, Wnt, Hedgehog, and LIF, in progenitor cells compared with differentiated cells. Given the emerging evidence that stem/progenitor cells serve as precursors for cancers, these cellular reagents represent a timely and invaluable resource to explore unresolved questions related to stem/progenitor origin of breast cancer.


Assuntos
Linhagem Celular/citologia , Glândulas Mamárias Humanas/citologia , Células-Tronco/citologia , Telomerase , Biomarcadores/análise , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Células Clonais/citologia , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem
13.
J Neurosci Res ; 87(10): 2326-39, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19365854

RESUMO

Reactive astrogliosis is a key pathological aspect of neuroinflammatory disorders including human immunodeficiency virus type 1 (HIV-1)-associated neurological disease. On the basis of previous data that showedastrocytes activated with interleukin (IL)-1beta induce neuronal injury, we analyzed global gene changes in IL-1beta-activated human astrocytes by gene microarray. Among the up-regulated genes, CD38, a 45-kDa type II single chain transmembrane glycoprotein, was a top candidate, with a 17.24-fold change that was validated by real-time polymerase chain reaction. Key functions of CD38 include enzymatic activities and involvement in adhesion and cell signaling. Importantly, CD38(+)CD8(+) T-cell expression is a clinical correlate for progression of HIV-1 infection and biological marker for immune activation. Thus, CD38 expression in HIV-1 and/or IL-1beta-stimulated human astrocytes and human brain tissues was analyzed. IL-1beta and HIV-1 activation of astrocytes enhanced CD38 mRNA levels. Both CD38 immunoreactivity and adenosine 5'-diphosphate (ADP)-ribosyl cyclase activity were up-regulated in IL-1beta-activated astrocytes. CD38 knockdown using specific siRNAs significantly reduced astrocyte proinflammatory cytokine and chemokine production. However, CD38 mRNA levels were unchanged in IL-1beta knockdown conditions, suggesting that IL-1beta autocrine loop is not implicated in this process. Quantitative immunohistochemical analysis of HIV-seropositive without encephalitis and HIV-1 encephalitis brain tissues showed significant up-regulation of CD38, which colocalized with glial fibrillary acidic protein-positive cells in areas of inflammation. These results suggest an important role of CD38 in the regulation of astrocyte dysfunction during the neuroinflammatory processes involved in neurodegenerative/neuroinflammatory disorders such as HIV-1 encephalitis.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Encéfalo/virologia , Encefalite Viral/patologia , HIV-1/metabolismo , Interleucina-1beta/metabolismo , Regulação para Cima/fisiologia , ADP-Ribosil Ciclase 1/genética , Análise de Variância , Astrócitos/efeitos dos fármacos , Astrócitos/imunologia , Encéfalo/citologia , Encéfalo/patologia , Células Cultivadas , Quimiocina CCL2/metabolismo , ADP-Ribose Cíclica/metabolismo , Relação Dose-Resposta a Droga , Feto , Perfilação da Expressão Gênica/métodos , Soropositividade para HIV/patologia , Humanos , Interleucina-1beta/farmacologia , Interleucina-8/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Mensageiro , RNA Interferente Pequeno/metabolismo , Transfecção , Regulação para Cima/efeitos dos fármacos
14.
Cancer Res ; 68(22): 9231-8, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19010895

RESUMO

Numerous studies have established the association of MUC4 with the progression of cancer and metastasis. An aberrant expression of MUC4 is reported in precancerous lesions, indicating its early involvement in the disease process; however, its precise role in cellular transformation has not been explored. MUC4 contains many unique domains and is proposed to affect cell signaling pathways and behavior of the tumor cells. In the present study, to decipher the oncogenic potential of MUC4, we stably expressed the MUC4 mucin in NIH3T3 mouse fibroblast cells. Stable ectopic expression of MUC4 resulted in increased growth, colony formation, and motility of NIH3T3 cells in vitro and tumor formation in nude mice when cells were injected s.c. Microarray analysis showed increased expression of several growth-associated and mitochondrial energy production-associated genes in MUC4-expressing NIH3T3 cells. In addition, expression of MUC4 in NIH3T3 cells resulted in enhanced levels of oncoprotein ErbB2 and its phosphorylated form (pY(1248)-ErbB2). In conclusion, our studies provide the first evidence that MUC4 alone induces cellular transformation and indicates a novel role of MUC4 in cancer biology.


Assuntos
Transformação Celular Neoplásica , Mucina-4/fisiologia , Animais , Movimento Celular , Proliferação de Células , Perfilação da Expressão Gênica , Camundongos , Células NIH 3T3 , Receptor ErbB-2/genética , Transfecção
15.
Cancer Lett ; 259(1): 28-38, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-17977648

RESUMO

Previously, we have developed a unique in vitro LNCaP cell model, which includes androgen-dependent (LNCaP-C33), androgen-independent (LNCaP-C81) and an intermediate phenotype (LNCaP-C51) cell lines resembling the stages of prostate cancer progression to hormone independence. This model is advantageous in overcoming the heterogeneity associated with the prostate cancer up to a certain extent. We characterized and compared the gene expression profiles in LNCaP-C33 (androgen-dependent) and LNCaP-C81 (androgen-independent) cells using Affymetrix GeneChip array analyses. Multiple genes were identified exhibiting differential expression during androgen-independent progression. Among the important genes upregulated in androgen-independent cells were PCDH7, TPTE, TSPY, EPHA3, HGF, MET, EGF, TEM8, etc., whereas many candidate tumor suppressor genes (HTATIP2, CDKN2A, CDKN2B, CDKN1C, TP53, TP73, ICAM1, SOCS1/2, SPRY2, PPP2CA, PPP3CA, etc.) were decreased. Pathway prediction analysis identified important gene networks associated with growth-promoting and apoptotic signaling that were perturbed during androgen-independent progression. Further investigation of one of the genes, PPP2CA, which encodes the catalytic subunit of a serine phosphatase PP2A, a potent tumor suppressor, revealed that its expression was decreased in prostate cancer compared to adjacent normal/benign tissue. Furthermore, the downregulated expression of PPP2CA was significantly correlated with tumor stage and Gleason grade. Future studies on the identified differentially expressed genes and signaling pathways may be helpful in understanding the biology of prostate cancer progression and prove useful in developing novel prognostic biomarkers and therapy for androgen-refractory prostate cancer.


Assuntos
Androgênios/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Neoplasias Hormônio-Dependentes/genética , Neoplasias da Próstata/genética , RNA Mensageiro/análise , Apoptose/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Progressão da Doença , Regulação para Baixo , Perfilação da Expressão Gênica/métodos , Humanos , Imuno-Histoquímica , Masculino , Neoplasias Hormônio-Dependentes/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Neoplasias da Próstata/metabolismo , Proteína Fosfatase 2/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética
16.
Clin Cancer Res ; 13(18 Pt 1): 5295-304, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17875758

RESUMO

PURPOSE: In B-cell chronic lymphocytic leukemia (CLL), high CD38 expression has been associated with unfavorable clinical course, advanced disease, resistance to therapy, shorter time to first treatment, and shorter survival. However, the genes associated with CLL patient subgroups with high and low CD38 expression and their potential role in disease progression is not known. EXPERIMENTAL DESIGN: To identify the genes associated with the clinical disparity in CLL patients with high versus low CD38 expression, transcriptional profiles were obtained from CLL cells from 39 different patients using oligonucleotide microarray. Gene expression was also compared between CLL cells and B cells from healthy individuals. RESULTS: Gene expression analysis identified 76 differentially expressed genes in CD38 high versus low groups. Out of these genes, HEM1, CTLA4, and MNDA were selected for further studies and their differential expression was confirmed by real-time PCR. HEM1 overexpression was associated with poor outcome, whereas the overexpression of CTLA4 and MNDA was associated with good outcome. Down-regulation of HEM1 expression in patient CLL cells resulted in a significant increase in their susceptibility to fludarabine-mediated killing. In addition, when gene expression patterns in CD38 high and low CLL cells were compared with normal B-cell profiles, ATM expression was found to be significantly lower in CD38 high compared with CD38 low CLL as confirmed by real-time reverse transcription-PCR. CONCLUSIONS: These results identify the possible genes that may be involved in cell proliferation and survival and, thus, determining the clinical behavior of CLL patients expressing high or low CD38.


Assuntos
ADP-Ribosil Ciclase 1/genética , Regulação Leucêmica da Expressão Gênica , Genes Neoplásicos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/mortalidade , Antígenos CD/genética , Antígenos de Diferenciação/genética , Antígenos de Diferenciação Mielomonocítica/genética , Proteínas Mutadas de Ataxia Telangiectasia , Antígeno CTLA-4 , Proteínas de Ciclo Celular/genética , Proliferação de Células , Proteínas de Ligação a DNA/genética , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Proteínas de Membrana/genética , Prognóstico , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
17.
BMC Urol ; 5: 5, 2005 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-15790403

RESUMO

BACKGROUND: The changes in gene expression profile as prostate cancer progresses from an androgen-dependent disease to an androgen-independent disease are still largely unknown. METHODS: We examined the gene expression profile in the LNCaP prostate cancer progression model during chronic treatment with Casodex using cDNA microarrays consisting of 2305 randomly chosen genes. RESULTS: Our studies revealed a representative collection of genes whose expression was differentially regulated in LNCaP cells upon treatment with Casodex. A set of 15 genes were shown to be highly expressed in Casodex-treated LNCaP cells compared to the reference sample. This set of highly expressed genes represents a signature collection unique to prostate cancer since their expression was significantly greater than that of the collective pool of ten cancer cell lines of the reference sample. The highly expressed signature collection included the hypoxia-related genes membrane metallo-endopeptidase (MME), cyclin G2, and Bcl2/adenovirus E1B 19 kDa (BNIP3). Given the roles of these genes in angiogenesis, cell cycle regulation, and apoptosis, we further analyzed their expression and concluded that these genes may be involved in the molecular changes that lead to androgen-independence in prostate cancer. CONCLUSION: Our data indicate that one of the mechanisms of Casodex action in prostate cancer cells is induction of hypoxic gene expression.


Assuntos
Anilidas/uso terapêutico , Antineoplásicos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Masculino , Nitrilas , Compostos de Tosil
18.
BMC Immunol ; 5: 20, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15369600

RESUMO

BACKGROUND: There are three major B-cell compartments in peripheral lymphoid organs: the germinal center (GC), the mantle zone (MNZ) and the marginal zone (MGZ). Unique sets of B-cells reside in these compartments, and they have specific functional roles in humoral immune response. MNZ B cells are naive cells in a quiescent state and may participate in GC reactions upon proper stimulation. The adult splenic MGZ contains mostly memory B cells and is also known to provide a rapid response to particulate antigens. The GC B-cells proliferate rapidly and undergo selection and affinity maturation. The B-cell maturational process is accompanied by changes in the expression of cell-surface and intracellular proteins and requires signals from the specialized microenvironments. RESULTS: We performed laser microdissection of the three compartments for gene expression profiling by cDNA microarray. The transcriptional program of the GC was dominated by upregulation of genes associated with proliferation and DNA repair or recombination. The MNZ and MGZ showed increased expression of genes promoting cellular quiescence. The three compartments also revealed distinct repertoires of apoptosis-associated genes, chemokines and chemokine receptors. The MNZ and GC showed upregulation of CCL20 and CCL18 respectively. The MGZ was characterized by high expression of many chemokines genes e.g. CXCL12, CCL3, CCL14 and IFN-associated genes, consistent with its role in rapid response to infections. A stromal signature was identified including genes associated with macrophages or with synthesis of extracellular matrix and genes that influenced lymphocyte migration and survival. Differentially expressed genes that did not belong to the above categories include the well characterized BCL6 and CD10 and many others whose function is not known. CONCLUSIONS: Transcriptional profiling of B-cell compartments has identified groups of genes involved in critical molecular and cellular events that affect proliferation, survival migration, and differentiation of the cells. The gene expression study of normal B-cell compartments may additionally contribute to our understanding of the molecular abnormalities of the corresponding lymphoid tumors.


Assuntos
Linfócitos B/química , Linfócitos B/metabolismo , Compartimento Celular/genética , Perfilação da Expressão Gênica/métodos , Tecido Linfoide/química , Tecido Linfoide/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Apoptose/genética , Subpopulações de Linfócitos B/química , Subpopulações de Linfócitos B/metabolismo , Proteínas de Ciclo Celular/genética , Proliferação de Células , Quimiocinas/genética , Citocinas/genética , Proteínas da Matriz Extracelular/genética , Humanos , Lasers , Microdissecção/métodos , Receptores de Quimiocinas/genética , Receptores de Citocinas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Células Estromais/química , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA