Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Am Chem Soc ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781575

RESUMO

Elicitation of effective antitumor immunity following cancer vaccination requires the selective activation of distinct effector cell populations and pathways. Here we report a therapeutic approach for generating potent T cell responses using a modular vaccination platform technology capable of inducing directed immune activation, termed the Protein-like Polymer (PLP). PLPs demonstrate increased proteolytic resistance, high uptake by antigen-presenting cells (APCs), and enhanced payload-specific T cell responses. Key design parameters, namely payload linkage chemistry, degree of polymerization, and side chain composition, were varied to optimize vaccine formulations. Linking antigens to the polymer backbone using an intracellularly cleaved disulfide bond copolymerized with a diluent amount of oligo(ethylene glycol) (OEG) resulted in the highest payload-specific potentiation of antigen immunogenicity, enhancing dendritic cell (DC) activation and antigen-specific T cell responses. Vaccination with PLPs carrying either gp100, E7, or adpgk peptides significantly increased the survival of mice inoculated with B16F10, TC-1, or MC38 tumors, respectively, without the need for adjuvants. B16F10-bearing mice immunized with gp100-carrying PLPs showed increased antitumor CD8+ T cell immunity, suppressed tumor growth, and treatment synergy when paired with two distinct stimulator of interferon gene (STING) agonists. In a human papillomavirus-associated TC-1 model, combination therapy with PLP and 2'3'-cGAMP resulted in 40% of mice completely eliminating implanted tumors while also displaying curative protection from rechallenge, consistent with conferment of lasting immunological memory. Finally, PLPs can be stored long-term in a lyophilized state and are highly tunable, underscoring the unique properties of the platform for use as generalizable cancer vaccines.

2.
ACS Nano ; 17(18): 17996-18007, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37713675

RESUMO

The stability of the core can significantly impact the therapeutic effectiveness of liposome-based drugs. While the spherical nucleic acid (SNA) architecture has elevated liposomal stability to increase therapeutic efficacy, the chemistry used to anchor the DNA to the liposome core is an underexplored design parameter with a potentially widespread biological impact. Herein, we explore the impact of SNA anchoring chemistry on immunotherapeutic function by systematically studying the importance of hydrophobic dodecane anchoring groups in attaching DNA strands to the liposome core. By deliberately modulating the size of the oligomer that defines the anchor, a library of structures has been established. These structures, combined with in vitro and in vivo immune stimulation analyses, elucidate the relationships between and importance of anchoring strength and dissociation of DNA from the SNA shell on its biological properties. Importantly, the most stable dodecane anchor, (C12)9, is superior to the n = 4-8 and 10 structures and quadruples immune stimulation compared to conventional cholesterol-anchored SNAs. When the OVA1 peptide antigen is encapsulated by the (C12)9 SNA and used as a therapeutic vaccine in an E.G7-OVA tumor model, 50% of the mice survived the initial tumor, and all of those survived tumor rechallenge. Importantly, the strong innate immune stimulation does not cause a cytokine storm compared to linear immunostimulatory DNA. Moreover, a (C12)9 SNA that encapsulates a peptide targeting SARS-CoV-2 generates a robust T cell response; T cells raised from SNA treatment kill >40% of target cells pulsed with the same peptide and ca. 45% of target cells expressing the entire spike protein. This work highlights the importance of using anchor chemistry to elevate SNA stability to achieve more potent and safer immunotherapeutics in the context of both cancer and infectious disease.


Assuntos
COVID-19 , Ácidos Nucleicos , Animais , Camundongos , Lipossomos , SARS-CoV-2 , DNA , Imunização
3.
ACS Appl Bio Mater ; 6(9): 3912-3918, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37567247

RESUMO

The design and synthesis of hairpin-like small interfering RNA spherical nucleic acids (siRNA-SNAs) based upon biocompatible liposome nanoparticle cores are described. The constructs were characterized by gel electrophoresis, dynamic light scattering, and OliGreen-based oligonucleotide quantification. These siRNA-SNA nanoconstructs enter cells 20-times more efficiently than linear siRNA in as little as 4 h, while exhibiting a 4-fold reduction in cytotoxicity compared with conventional siRNA-SNAs composed of gold nanoparticle cores. Importantly, these siRNA-SNA constructs effectively inhibit angiogenesis in vitro by silencing vascular endothelial growth factor, a key mediator of angiogenesis in a multitude of diseases, in human umbilical vein endothelial cells. This work shows how hairpin architectures can be chemically incorporated into biocompatible SNAs in a way that retains advantageous SNA properties and maximizes gene regulation capabilities.


Assuntos
Nanopartículas Metálicas , Ácidos Nucleicos , Humanos , RNA Interferente Pequeno/química , Ácidos Nucleicos/genética , Ácidos Nucleicos/química , Ouro/química , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Nanopartículas Metálicas/química
5.
Nat Biomed Eng ; 7(7): 911-927, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36717738

RESUMO

Cancer vaccines must activate multiple immune cell types to be effective against aggressive tumours. Here we report the impact of the structural presentation of two antigenic peptides on immune responses at the transcriptomic, cellular and organismal levels. We used spherical nucleic acid (SNA) nanoparticles to investigate how the spatial distribution and placement of two antigen classes affect antigen processing, cytokine production and the induction of memory. Compared with single-antigen SNAs, a single dual-antigen SNA elicited a 30% increase in antigen-specific T cell activation and a two-fold increase in T cell proliferation. Antigen placement within dual-antigen SNAs altered the gene expression of T cells and tumour growth. Specifically, dual-antigen SNAs encapsulating antigens targeting helper T cells and with externally conjugated antigens targeting cytotoxic T cells elevated antitumour genetic pathways, stalling lymphoma tumours in mice. Additionally, when combined with the checkpoint inhibitor anti-programmed-cell-death protein-1 in a mouse model of melanoma, a specific antigen arrangement within dual-antigen SNAs suppressed tumour growth and increased the levels of circulating memory T cells. The structural design of multi-antigen vaccines substantially impacts their efficacy.


Assuntos
Vacinas Anticâncer , Melanoma , Ácidos Nucleicos , Animais , Camundongos , Vacinas Baseadas em Ácido Nucleico , Antígenos , Ácidos Nucleicos/química
6.
Proc Natl Acad Sci U S A ; 120(5): e2215091120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36696444

RESUMO

A foundational principle of rational vaccinology is that vaccine structure plays a critical role in determining therapeutic efficacy, but in order to establish fundamental, effective, and translatable vaccine design parameters, a highly modular and well-defined platform is required. Herein, we report a DNA dendron vaccine, a molecular nanostructure that consists of an adjuvant DNA strand that splits into multiple DNA branches with a varied number of conjugated peptide antigens that is capable of dendritic cell uptake, immune activation, and potent cancer killing. We leveraged the well-defined architecture and chemical modularity of the DNA dendron to study structure-function relationships that dictate molecular vaccine efficacy, particularly regarding the delivery of immune-activating DNA sequences and antigenic peptides on a single chemical construct. We investigated how adjuvant and antigen placement and number impact dendron cellular uptake and immune activation, in vitro. These parameters also played a significant role in raising a potent and specific immune response against target cancer cells. By gaining this structural understanding of molecular vaccines, DNA dendrons successfully treated a mouse cervical human papillomavirus TC-1 cancer model, in vivo, where the vaccine structure defined its efficacy; the top-performing design effectively reduced tumor burden (<150 mm3 through day 30) and maintained 100% survival through 44 d after tumor inoculation.


Assuntos
Vacinas Anticâncer , Dendrímeros , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Vacinas de DNA , Animais , Feminino , Camundongos , Humanos , Dendrímeros/farmacologia , Neoplasias do Colo do Útero/prevenção & controle , DNA , Peptídeos , Vacinas contra Papillomavirus/genética
7.
ACS Cent Sci ; 8(6): 692-704, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35756370

RESUMO

Cancer immunotherapy is a powerful treatment strategy that mobilizes the immune system to fight disease. Cancer vaccination is one form of cancer immunotherapy, where spatiotemporal control of the delivery of tumor-specific antigens, adjuvants, and/or cytokines has been key to successfully activating the immune system. Nanoscale materials that take advantage of chemistry to control the nanoscale structural arrangement, composition, and release of immunostimulatory components have shown significant promise in this regard. In this Outlook, we examine how the nanoscale structure, chemistry, and composition of immunostimulatory compounds can be modulated to maximize immune response and mitigate off-target effects, focusing on spherical nucleic acids as a model system. Furthermore, we emphasize how chemistry and materials science are driving the rational design and development of next-generation cancer vaccines. Finally, we identify gaps in the field that should be addressed moving forward and outline future directions to galvanize researchers from multiple disciplines to help realize the full potential of this form of cancer immunotherapy through chemistry and rational vaccinology.

8.
Adv Healthc Mater ; 10(22): e2101262, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34494382

RESUMO

Cancer vaccines, which activate the immune system against a target antigen, are attractive for prostate cancer, where multiple upregulated protein targets are identified. However, many clinical trials implementing peptides targeting these proteins have yielded suboptimal results. Using spherical nucleic acids (SNAs), we explore how precise architectural control of vaccine components can activate a robust antigen-specific immune response in comparison to clinical formulations of the same targets. The SNA vaccines incorporate peptides for human prostate-specific membrane antigen (PSMA) or T-cell receptor γ alternate reading frame protein (TARP) into an optimized architecture, resulting in high rates of immune activation and cytolytic ability in humanized mice and human peripheral blood mononuclear cells (hPBMCs). Specifically, administered SNAs elevate the production and secretion of cytokines and increase polyfunctional cytotoxic T cells and effector memory. Importantly, T cells raised from immunized mice potently kill targets, including clinically relevant cells expressing the whole PSMA protein. Treatment of hPBMCs increases costimulatory markers and cytolytically active T cells. This work demonstrates the importance of vaccine structure and its ability to reformulate and elevate clinical targets. Moreover, it encourages the field to reinvestigate ineffective peptide targets and repackage them into optimally structured vaccines to harness antigen potency and enhance clinical outcomes.


Assuntos
Vacinas Anticâncer , Neoplasias da Próstata , Vacinas de DNA , Animais , Humanos , Imunidade , Leucócitos Mononucleares , Masculino , Camundongos , Neoplasias da Próstata/terapia
9.
J Am Chem Soc ; 143(34): 13513-13518, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34410116

RESUMO

Herein, a method for synthesizing and utilizing DNA dendrons to deliver biomolecules to living cells is reported. Inspired by high-density nucleic acid nanostructures, such as spherical nucleic acids, we hypothesized that small clusters of nucleic acids, in the form of DNA dendrons, could be conjugated to biomolecules and facilitate their cellular uptake. We show that DNA dendrons are internalized by 90% of dendritic cells after just 1 h of treatment, with a >20-fold increase in DNA delivery per cell compared with their linear counterparts. This effect is due to the interaction of the DNA dendrons with scavenger receptor-A on cell surfaces, which results in their rapid endocytosis. Moreover, when conjugated to peptides at a single attachment site, dendrons enhance the cellular delivery and activity of both the model ovalbumin 1 peptide and the therapeutically relevant thymosin alpha 1 peptide. These findings show that high-density, multivalent DNA ligands play a significant role in dictating cellular uptake of biomolecules and consequently will expand the scope of deliverable biomolecules to cells. Indeed, DNA dendrons are poised to become agents for the cellular delivery of many molecular and nanoscale materials.


Assuntos
DNA/química , Dendrímeros/química , Animais , Linhagem Celular , Dendrímeros/metabolismo , Endocitose , Camundongos , Ovalbumina/química , Peptídeos/química , Timalfasina/química
10.
Sci Rep ; 11(1): 5107, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658580

RESUMO

In the field of oncology research, a deeper understanding of tumor biology has shed light on the role of environmental conditions surrounding cancer cells. In this regard, targeting the tumor microenvironment has recently emerged as a new way to access this disease. In this work, a novel extracellular matrix (ECM)-targeting nanotherapeutic was engineered using a lipid-based nanoparticle chemically linked to an inhibitor of the ECM-related enzyme, lysyl oxidase 1 (LOX), that inhibits the crosslinking of elastin and collagen fibers. We demonstrated that, when the conjugated vesicles were loaded with the chemotherapeutic epirubicin, superior inhibition of triple negative breast cancer (TNBC) cell growth was observed both in vitro and in vivo. Moreover, in vivo results displayed prolonged survival, minimal cytotoxicity, and enhanced biocompatibility compared to free epirubicin and epirubicin-loaded nanoparticles. This all-in-one nano-based ECM-targeting chemotherapeutic may provide a key-enabling technology for the treatment of TNBC.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Anticorpos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Epirubicina/administração & dosagem , Lipossomos/química , Nanopartículas/química , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Anticorpos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimioterapia Combinada/métodos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/enzimologia , Feminino , Humanos , Camundongos , Camundongos Nus , Proteína-Lisina 6-Oxidase/imunologia , Distribuição Tecidual , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Artigo em Inglês | MEDLINE | ID: mdl-32626700

RESUMO

Nanoparticle-based drug delivery systems have been synthesized from a wide array of materials. The therapeutic success of these platforms hinges upon their ability to favorably interact with the biological environment (both systemically and locally) and recognize the diseased target tissue. The immune system, composed of a highly coordinated organization of cells trained to recognize foreign bodies, represents a key mediator of these interactions. Although components of this system may act as a barrier to nanoparticle (NP) delivery, the immune system can also be exploited to target and trigger signaling cues that facilitate the therapeutic response stemming from systemic administration of NPs. The nano-bio interface represents the key facilitator of this communication exchange, where the surface properties of NPs govern their in vivo fate. Cell membrane-based biomimetic nanoparticles have emerged as one approach to achieve targeted drug delivery by actively engaging and communicating with the biological milieu. In this review, we will highlight the relationship between these biomimetic nanoparticles and the immune system, emphasizing the role of tuning the nano-bio interface in the immunomodulation of diseases. We will also discuss the therapeutic applications of this approach with biomimetic nanoparticles, focusing on specific diseases ranging from cancer to infectious diseases. Lastly, we will provide a critical evaluation on the current state of this field of cell membrane-based biomimetic nanoparticles and its future directions in immune-based therapy.

12.
Int J Pharm ; 577: 119067, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31981705

RESUMO

Wound healing is a complex process that consists of three overlapping phases: inflammation, proliferation, and remodeling. A bacterial infection can increase inflammation and delay this process. Microorganisms are closely related to the innate immune system, such as macrophages and neutrophils, as they can start an inflammatory cascade. Essential oils play an important role in the inhibition and prevention of bacterial growth due to their ability to reduce antimicrobial resistance. The possibility to find a strategy that combines antimicrobial and anti-inflammatory properties is particularly appealing for wound healing. In this work, we showcase a variety of patches based on electrospun polycaprolactone (PCL) nanofibers loaded with natural compounds derived from essential oils, such as thymol (THY) and tyrosol (TYR), to achieve reduced inflammation. In addition, we compared the effect these essential oils have on activated macrophages when incorporated into the PCL patch. Specifically, we demonstrate that PCL-THY resulted in more efficient down-regulation of pro-inflammatory genes related to the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κb) pathway when compared to PCL-TYR and the combination patch containing TYR and THY (i.e., PCL-TYR-THY). Furthermore, PCL-THY displayed low affinity for cell attachment, which may hinder wound adherence and integration. Overall, our results indicate that THY-loaded patches could serve as promising candidates for the fabrication of dressings that incorporate bactericidal and anti-inflammatory properties while simultaneously avoiding the limitations of traditional antibiotic-loaded devices.


Assuntos
Anti-Inflamatórios/farmacologia , Nanofibras , Óleos Voláteis/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Anti-Inflamatórios/administração & dosagem , Linhagem Celular , Inflamação/tratamento farmacológico , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Óleos Voláteis/administração & dosagem , Poliésteres/química
13.
Sci Rep ; 10(1): 172, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932600

RESUMO

Despite recent advances in drug delivery, the targeted treatment of unhealthy cells or tissues continues to remain a priority. In cancer (much like other pathologies), delivery vectors are designed to exploit physical and biological features of unhealthy tissues that are not always homogenous across the disease. In some cases, shifting the target from unhealthy tissues to the whole organ can represent an advantage. Specifically, the natural organ-specific retention of nanotherapeutics following intravenous administration as seen in the lung, liver, and spleen can be strategically exploited to enhance drug delivery. Herein, we outline the development of a cell-based delivery system using macrophages as a delivery vehicle. When loaded with a chemotherapeutic payload (i.e., doxorubicin), these cellular vectors (CELVEC) were shown to provide continued release within the lung. This study provides proof-of-concept evidence of an alternative class of biomimetic delivery vectors that capitalize on cell size to provide therapeutic advantages for pulmonary treatments.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Biomimética , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Pulmão/metabolismo , Macrófagos/química , Animais , Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/farmacocinética , Liberação Controlada de Fármacos , Lipossomos , Pulmão/citologia , Masculino , Camundongos , Camundongos Nus , Distribuição Tecidual
14.
Clin Transl Med ; 8(1): 8, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30877412

RESUMO

Nanoparticles have seen considerable popularity as effective tools for drug delivery. However, non-specific targeting continues to remain a challenge. Recently, biomimetic nanoparticles have emerged as an innovative solution that exploits biologically-derived components to improve therapeutic potential. Specifically, cell membrane proteins extracted from various cells (i.e., leukocytes, erythrocytes, platelets, mesenchymal stem cells, cancer) have shown considerable promise in bestowing nanoparticles with increased circulation and targeting efficacy. Traditional nanoparticles can be detected and removed by the immune system which significantly hinders their clinical success. Biomimicry has been proposed as a promising approach to overcome these limitations. In this review, we highlight the current trends in biomimetic nanoparticles and describe how they are being used to increase their chemotherapeutic effect in cancer treatment.

15.
Curr Med Chem ; 26(33): 6132-6148, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30182846

RESUMO

Cancer treatment still represents a formidable challenge, despite substantial advancements in available therapies being made over the past decade. One major issue is poor therapeutic efficacy due to lack of specificity and low bioavailability. The progress of nanotechnology and the development of a variety of nanoplatforms have had a significant impact in improving the therapeutic outcome of chemotherapeutics. Nanoparticles can overcome various biological barriers and localize at tumor site, while simultaneously protecting a therapeutic cargo and increasing its circulation time. Despite this, due to their synthetic origin, nanoparticles are often detected by the immune system and preferentially sequestered by filtering organs. Exosomes have recently been investigated as suitable substitutes for the shortcomings of nanoparticles due to their biological compatibility and particularly small size (i.e., 30-150 nm). In addition, exosomes have been found to play important roles in cell communication, acting as natural carriers of biological cargoes throughout the body. This review aims to highlight the use of exosomes as drug delivery vehicles for cancer and showcases the various attempts used to exploit exosomes with a focus on the delivery of chemotherapeutics and nucleic acids.


Assuntos
Portadores de Fármacos/química , Exossomos/química , Nanopartículas/química , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Exossomos/metabolismo , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo
16.
ACS Appl Mater Interfaces ; 10(51): 44344-44353, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30511828

RESUMO

The use of nanomaterials as carriers for the delivery of growth factors has been applied to a multitude of applications in tissue engineering. However, issues of toxicity, stability, and systemic effects of these platforms have yet to be fully understood, especially for cardiovascular applications. Here, we proposed a delivery system composed of poly(dl-lactide- co-glycolide) acid (PLGA) and porous silica nanoparticles (pSi) to deliver vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). The tight spatiotemporal release of these two proteins has been proven to promote neovascularization. In order to minimize tissue toxicity, localize the release, and maintain a stable platform, we conjugated two formulations of PLGA-pSi to electrospun (ES) gelatin to create a combined ES patch releasing both PDGF and VEGF. When compared to freely dispersed particles, the ES patch cultured in vitro with neonatal cardiac cells had significantly less particle internalization (2.0 ± 1.3%) compared to free PLGA-pSi (21.5 ± 6.1) or pSi (28.7 ± 2.5) groups. Internalization was positively correlated to late-stage apoptosis with PLGA-pSi and pSi groups having increased apoptosis compared to the untreated group. When implanted subcutaneously, the ES patch was shown to have greater neovascularization than controls evidenced by increased expression of α-SMA and CD31 after 21 days. Quantitative reverse transcription-polymerase chain reaction results support increased angiogenesis by the upregulation of VEGFA, VEGFR2, vWF, and COL3A1, exhibiting a synergistic effect with the release of VEGF-A164 and PDGF-BB after 21 days in vivo. The results of this study proved that the ES patch reduced cellular toxicity and may be tailored to have a dual release of growth factors promoting localized neovascularization.


Assuntos
Becaplermina , Proliferação de Células/efeitos dos fármacos , Miócitos Cardíacos , Nanopartículas/química , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular , Animais , Becaplermina/química , Becaplermina/farmacocinética , Becaplermina/farmacologia , Implantes de Medicamento/química , Implantes de Medicamento/farmacocinética , Implantes de Medicamento/farmacologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/transplante , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Porosidade , Ratos , Dióxido de Silício/química , Dióxido de Silício/farmacocinética , Dióxido de Silício/farmacologia , Engenharia Tecidual , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/farmacocinética , Fator A de Crescimento do Endotélio Vascular/farmacologia
17.
Nanomaterials (Basel) ; 8(9)2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134564

RESUMO

Over the years, imaging and therapeutic modalities have seen considerable progress as a result of advances in nanotechnology. Theranostics, or the marrying of diagnostics and therapy, has increasingly been employing nano-based approaches to treat cancer. While first-generation nanoparticles offered considerable promise in the imaging and treatment of cancer, toxicity and non-specific distribution hindered their true potential. More recently, multistage nanovectors have been strategically designed to shield and carry a payload to its intended site. However, detection by the immune system and sequestration by filtration organs (i.e., liver and spleen) remains a major obstacle. In an effort to circumvent these biological barriers, recent trends have taken inspiration from biology. These bioinspired approaches often involve the use of biologically-derived cellular components in the design and fabrication of biomimetic nanoparticles. In this review, we provide insight into early nanoparticles and how they have steadily evolved to include bioinspired approaches to increase their theranostic potential.

18.
Theranostics ; 8(4): 1131-1145, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29464004

RESUMO

Activation of the vascular endothelium is characterized by increased expression of vascular adhesion molecules and chemokines. This activation occurs early in the progression of several diseases and triggers the recruitment of leukocytes. Inspired by the tropism of leukocytes, we investigated leukocyte-based biomimetic nanoparticles (i.e., leukosomes) as a novel theranostic platform for inflammatory diseases. Methods: Leukosomes were assembled by combining phospholipids and membrane proteins from leukocytes. For imaging applications, phospholipids modified with rhodamine and gadolinium were used. Leukosomes incubated with antibodies blocking lymphocyte function-associated antigen 1 (LFA-1) and CD45 were administered to explore their roles in targeting inflammation. In addition, relaxometric assessment of NPs was evaluated. Results: Liposomes and leukosomes were both spherical in shape with sizes ranging from 140-170 nm. Both NPs successfully integrated 8 and 13 µg of rhodamine and gadolinium, respectively, and demonstrated less than 4% variation in physicochemical features. Leukosomes demonstrated a 16-fold increase in breast tumor accumulation relative to liposomes. Furthermore, quantification of leukosomes in tumor vessels demonstrated a 4.5-fold increase in vessel lumens and a 14-fold increase in vessel walls. Investigating the targeting mechanism of action revealed that blockage of LFA-1 on leukosomes resulted in a 95% decrease in tumor accumulation. Whereas blockage of CD45 yielded a 60% decrease in targeting and significant increases in liver and spleen accumulation. In addition, when administered in mice with atherosclerotic plaques, leukosomes exhibited a 4-fold increase in the targeting of inflammatory vascular lesions. Lastly, relaxometric assessment of NPs demonstrated that the incorporation of membrane proteins into leukosomes did not impact the r1 and r2 relaxivities of the NPs, demonstrating 6 and 30 mM-1s-1, respectively. Conclusion: Our study demonstrates the ability of leukosomes to target activated vasculature and exhibit superior accumulation in tumors and vascular lesions. The versatility of the phospholipid backbone within leukosomes permits the incorporation of various contrast agents. Furthermore, leukosomes can potentially be loaded with therapeutics possessing diverse physical properties and thus warrant further investigation toward the development of powerful theranostic agents.


Assuntos
Materiais Biomiméticos/química , Materiais Biomiméticos/farmacocinética , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Endotélio Vascular/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Animais , Corantes Fluorescentes/farmacocinética , Gadolínio/farmacocinética , Leucócitos/química , Leucócitos/metabolismo , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Camundongos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Fosfolipídeos/isolamento & purificação , Fosfolipídeos/metabolismo , Ligação Proteica , Rodaminas/farmacocinética , Coloração e Rotulagem/métodos , Nanomedicina Teranóstica/métodos , Doenças Vasculares/diagnóstico , Doenças Vasculares/tratamento farmacológico
19.
Curr Med Chem ; 25(34): 4208-4223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28933296

RESUMO

Cancer treatment still remains a challenge due to the several limitations of currently used chemotherapeutics, such as their poor pharmacokinetics, unfavorable chemical properties, as well as inability to discriminate between healthy and diseased tissue. Nanotechnology offered potent tools to overcome these limitations. Drug encapsulation within a delivery system permitted i) to protect the payload from enzymatic degradation/ inactivation in the blood stream, ii) to improve the physicochemical properties of poorly water-soluble drugs, like paclitaxel, and iii) to selectively deliver chemotherapeutics to the cancer lesions, thus reducing the off-target toxicity, and promoting the intracellular internalization. To accomplish this purpose, several strategies have been developed, based on biological and physical changes happening locally and systemically as a consequence of tumorigenesis. Here, we will discuss the role of inflammation in the different steps of tumor development and the strategies based on the use of nanoparticles that exploit the inflammatory pathways in order to selectively target the tumor-associated microenvironment for therapeutic and diagnostic purposes.


Assuntos
Inflamação/patologia , Neoplasias/patologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Humanos , Inflamação/complicações , Inflamação/prevenção & controle , Macrófagos/citologia , Macrófagos/metabolismo , Nanomedicina , Metástase Neoplásica , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neovascularização Patológica , Microambiente Tumoral
20.
Sci Rep ; 7(1): 7991, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28801676

RESUMO

A major challenge in regenerative medicine is to improve therapeutic cells' delivery and targeting using an efficient and simple protocol. Mesenchymal stem cells (MSC) are currently employed for the treatment of inflammatory-based diseases, due to their powerful immunosoppressive potential. Here we report a simple and versatile method to transiently overexpress the hyaluronic acid (HA) receptor, CD44, on MSC membranes, to improve their homing potential towards an inflammatory site without affecting their behavior. The effect of HA-coatings on murine MSC was functionally determined both, in vitro and in vivo as a consequence of the transient CD44 overexpression induced by HA. Data obtained from the in vitro migration assay demonstrated a two-fold increase in the migratory potential of HA-treated MSC compared to untreated cells. In an LPS-induced inflamed ear murine model, HA-treated MSC demonstrated a significantly higher inflammatory targeting as observed at 72 hrs as compared to untreated cells. This increased accumulation for HA-treated MSC yielded a substantial reduction in inflammation as demonstrated by the decrease in the expression of pro-inflammatory markers and by the induction of a pro-regenerative environment.


Assuntos
Movimento Celular , Ácido Hialurônico/farmacologia , Transplante de Células-Tronco Mesenquimais/métodos , Cultura Primária de Células/métodos , Animais , Células Cultivadas , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA