Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
PLoS One ; 19(3): e0298437, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38498459

RESUMO

Ionizing radiation (IR) and oncolytic viruses are both used to treat cancer, and the effectiveness of both agents depends upon stimulating an immune response against the tumor. In this study we tested whether combining image guided ionizing radiation (IG-IR) with an oncolytic vaccinia virus (VACV) could yield a better therapeutic response than either treatment alone. ΔF4LΔJ2R VACV grew well on irradiated human and mouse breast cancer cells, and the virus can be combined with 4 or 8 Gy of IR to kill cells in an additive or weakly synergistic manner. To test efficacy in vivo we used immune competent mice bearing orthotopic TUBO mammary tumors. IG-IR worked well with 10 Gy producing 80% complete responses, but this was halved when the tumors were treated with VACV starting 2 days after IG-IR. VACV monotherapy was ineffective in this model. The antagonism was time dependent as waiting for 21 days after IG-IR eliminated the inhibitory effect but without yielding any further benefits over IR alone. In irradiated tumors, VACV replication was also lower, suggesting that irradiation created an environment that did not support infection as well in vivo as in vitro. A study of how four different treatment regimens affected the immune composition of the tumor microenvironment showed that treating irradiated tumors with VACV altered the immunological profiles in tumors exposed to IR or VACV alone. We detected more PD-1 and PD-L1 expression in tumors exposed to IR+VACV but adding an αPD-1 antibody to the protocol did not change the way VACV interferes with IG-IR therapy. VACV encodes many immunosuppressive gene products that may interfere with the ability of radiotherapy to induce an effective anti-tumor immune response through the release of danger-associated molecular patterns. These data suggest that infecting irradiated tumors with VACV, too soon after exposure, may interfere in the innate and linked adaptive immune responses that are triggered by radiotherapy to achieve a beneficial impact.


Assuntos
Neoplasias Mamárias Animais , Terapia Viral Oncolítica , Vírus Oncolíticos , Radioterapia Guiada por Imagem , Vacínia , Humanos , Animais , Camundongos , Vaccinia virus/genética , Vírus Oncolíticos/genética , Neoplasias Mamárias Animais/radioterapia , Imunoterapia , Terapia Viral Oncolítica/métodos , Microambiente Tumoral
2.
Kidney360 ; 5(3): 471-480, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38433340

RESUMO

Pictured, described, and speculated on, for close to 400 years, the function of the rectal gland of elasmobranchs remained unknown. In the late 1950s, Burger discovered that the rectal gland of Squalus acanthias secreted an almost pure solution of sodium chloride, isosmotic with blood, which could be stimulated by volume expansion of the fish. Twenty five years later, Stoff discovered that the secretion of the gland was mediated by adenyl cyclase. Studies since then have shown that vasoactive intestinal peptide (VIP) is the neurotransmitter responsible for activating adenyl cyclase; however, the amount of circulating VIP does not change in response to volume expansion. The humoral factor involved in activating the secretion of the gland is C-type natriuretic peptide, secreted from the heart in response to volume expansion. C-type natriuretic peptide circulates to the gland where it stimulates the release of VIP from nerves within the gland, but it also has a direct effect, independent of VIP. Sodium, potassium, and chloride are required for the gland to secrete, and the secretion of the gland is inhibited by ouabain or furosemide. The current model for the secretion of chloride was developed from this information. Basolateral NaKATPase maintains a low intracellular concentration of sodium, which establishes the large electrochemical gradient for sodium directed into the cell. Sodium moves from the blood into the cell (together with potassium and chloride) down this electrochemical gradient, through a coupled sodium, potassium, and two chloride cotransporter (NKCC1). On activation, chloride moves from the cell into the gland lumen, down its electrical gradient through apical cystic fibrosis transmembrane regulator. The fall in intracellular chloride leads to the phosphorylation and activation of NKCC1 that allows more chloride into the cell. Transepithelial sodium secretion into the lumen is driven by an electrical gradient through a paracellular pathway. The aim of this review was to examine the history of the origin of this model for the transport of chloride and suggest that it is applicable to many epithelia that transport chloride, both in resorptive and secretory directions.


Assuntos
Tubarões , Animais , Tubarões/metabolismo , Glândula de Sal/metabolismo , Cloretos/metabolismo , Cloretos/farmacologia , Cação (Peixe)/metabolismo , Adenilil Ciclases/metabolismo , Adenilil Ciclases/farmacologia , Peptídeo Natriurético Tipo C/metabolismo , Peptídeo Natriurético Tipo C/farmacologia , Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/farmacologia , Sódio/metabolismo , Sódio/farmacologia , Potássio/metabolismo , Potássio/farmacologia
3.
Proc Natl Acad Sci U S A ; 121(8): e2315653121, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346199

RESUMO

Monkeypox virus (MPXV) infections in humans cause neurological disorders while studies of MPXV-infected animals indicate that the virus penetrates the brain. Pyroptosis is an inflammatory type of regulated cell death, resulting from plasma membrane rupture (PMR) due to oligomerization of cleaved gasdermins to cause membrane pore formation. Herein, we investigated the human neural cell tropism of MPXV compared to another orthopoxvirus, vaccinia virus (VACV), as well as its effects on immune responses and cell death. Astrocytes were most permissive to MPXV (and VACV) infections, followed by microglia and oligodendrocytes, with minimal infection of neurons based on plaque assays. Aberrant morphological changes were evident in MPXV-infected astrocytes that were accompanied with viral protein (I3) immunolabelling and detection of over 125 MPXV-encoded proteins in cell lysates by mass spectrometry. MPXV- and VACV-infected astrocytes showed increased expression of immune gene transcripts (IL12, IRF3, IL1B, TNFA, CASP1, and GSDMB). However, MPXV infection of astrocytes specifically induced proteolytic cleavage of gasdermin B (GSDMB) (50 kDa), evident by the appearance of cleaved N-terminal-GSDMB (30 kDa) and C-terminal- GSDMB (18 kDa) fragments. GSDMB cleavage was associated with release of lactate dehydrogenase and increased cellular nucleic acid staining, indicative of PMR. Pre-treatment with dimethyl fumarate reduced cleavage of GSDMB and associated PMR in MPXV-infected astrocytes. Human astrocytes support productive MPXV infection, resulting in inflammatory gene induction with accompanying GSDMB-mediated pyroptosis. These findings clarify the recently recognized neuropathogenic effects of MPXV in humans while also offering potential therapeutic options.


Assuntos
Monkeypox virus , Mpox , Animais , Humanos , Monkeypox virus/fisiologia , Piroptose , Astrócitos , Gasderminas
4.
Cancers (Basel) ; 15(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37444452

RESUMO

Glioblastoma (GBM) is a malignant brain cancer refractory to the current standard of care, prompting an extensive search for novel strategies to improve outcomes. One approach under investigation is oncolytic virus (OV) therapy in combination with radiotherapy. In addition to the direct cytocidal effects of radiotherapy, radiation induces cellular senescence in GBM cells. Senescent cells cease proliferation but remain viable and are implicated in promoting tumor progression. The interaction of viruses with senescent cells is nuanced; some viruses exploit the senescent state to their benefit, while others are hampered, indicating senescence-associated antiviral activity. It is unknown how radiation-induced cellular senescence may impact the oncolytic properties of OVs based on the vaccinia virus (VACV) that are used in combination with radiotherapy. To better understand this, we induced cellular senescence by treating GBM cells with radiation, and then evaluated the growth kinetics, infectivity, and cytotoxicity of an oncolytic VACV, ∆F4LΔJ2R, as well as wild-type VACV in irradiated senescence-enriched and non-irradiated human GBM cell lines. Our results show that both viruses display attenuated oncolytic activities in irradiated senescence-enriched GBM cell populations compared to non-irradiated controls. These findings indicate that radiation-induced cellular senescence is associated with antiviral activity and highlight important considerations for the combination of VACV-based oncolytic therapies with senescence-inducing agents such as radiotherapy.

5.
Cancer Lett ; 562: 216169, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37061120

RESUMO

Glioblastoma (GB) is a malignant and immune-suppressed brain cancer that remains incurable despite the current standard of care. Radiotherapy is a mainstay of GB treatment, however invasive cancer cells outside the irradiated field and radioresistance preclude complete eradication of GB cells. Oncolytic virus therapy harnesses tumor-selective viruses to spread through and destroy tumors while stimulating antitumor immune responses, and thus has potential for use following radiotherapy. We demonstrate that oncolytic ΔF4LΔJ2R vaccinia virus (VACV) replicates in and induces cytotoxicity of irradiated brain tumor initiating cells in vitro. Importantly, a single 10 Gy dose of radiation combined with ΔF4LΔJ2R VACV produced considerably superior anticancer effects relative to either monotherapy when treating immune-competent orthotopic CT2A-luc mouse models-significantly extending survival and curing the majority of mice. Mice cured by the combination displayed significantly increased survival relative to naïve age-matched controls following intracranial tumor challenge, with some complete rejections. Further, the combination therapy was associated with an increased ratio of CD8+ effector T cells to regulatory T cells compared to either monotherapy. This study validates the use of radiation with an oncolytic ΔF4LΔJ2R VACV to improve treatment of this malignant brain cancer.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Camundongos , Animais , Vírus Oncolíticos/fisiologia , Vaccinia virus/genética , Glioblastoma/terapia , Neoplasias Encefálicas/terapia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral
6.
BMC Biol ; 20(1): 88, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35421982

RESUMO

BACKGROUND: Despite the excellent fossil record of cephalopods, their early evolution is poorly understood. Different, partly incompatible phylogenetic hypotheses have been proposed in the past, which reflected individual author's opinions on the importance of certain characters but were not based on thorough cladistic analyses. At the same time, methods of phylogenetic inference have undergone substantial improvements. For fossil datasets, which typically only include morphological data, Bayesian inference and in particular the introduction of the fossilized birth-death model have opened new possibilities. Nevertheless, many tree topologies recovered from these new methods reflect large uncertainties, which have led to discussions on how to best summarize the information contained in the posterior set of trees. RESULTS: We present a large, newly compiled morphological character matrix of Cambrian and Ordovician cephalopods to conduct a comprehensive phylogenetic analysis and resolve existing controversies. Our results recover three major monophyletic groups, which correspond to the previously recognized Endoceratoidea, Multiceratoidea, and Orthoceratoidea, though comprising slightly different taxa. In addition, many Cambrian and Early Ordovician representatives of the Ellesmerocerida and Plectronocerida were recovered near the root. The Ellesmerocerida is para- and polyphyletic, with some of its members recovered among the Multiceratoidea and early Endoceratoidea. These relationships are robust against modifications of the dataset. While our trees initially seem to reflect large uncertainties, these are mainly a consequence of the way clade support is measured. We show that clade posterior probabilities and tree similarity metrics often underestimate congruence between trees, especially if wildcard taxa are involved. CONCLUSIONS: Our results provide important insights into the earliest evolution of cephalopods and clarify evolutionary pathways. We provide a classification scheme that is based on a robust phylogenetic analysis. Moreover, we provide some general insights on the application of Bayesian phylogenetic inference on morphological datasets. We support earlier findings that quartet similarity metrics should be preferred over the Robinson-Foulds distance when higher-level phylogenetic relationships are of interest and propose that using a posteriori pruned maximum clade credibility trees help in assessing support for phylogenetic relationships among a set of relevant taxa, because they provide clade support values that better reflect the phylogenetic signal.


Assuntos
Cefalópodes , Animais , Teorema de Bayes , Cefalópodes/genética , Fósseis , Filogenia , Probabilidade
8.
J Neurol Sci ; 416: 117006, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32623144

RESUMO

OBJECTIVES: This study draws on advances in Doppler ultrasound bubble sizing to investigate whether high volumes of macro-bubbles entering the brain during cardiac surgery increase the risk of new cerebral microbleeds (CMBs), ischemic MR lesions, or post-operative cognitive decline (POCD). METHODS: Transcranial Doppler (TCD) ultrasound recordings were analysed to estimate numbers of emboli and macrobubbles (>100 µm) entering the brain during cardiac surgery. Logistic regression was used to explore the hypothesis that emboli characteristics affect the incidence of new brain injuries identified through pre- and post-operative MRI and neuropsychological testing. RESULTS: TCD, MRI, and neuropsychological test data were compared between 28 valve and 18 CABG patients. Although valve patients received over twice as many emboli per procedure [median: 1995 vs. 859, p = .004], and seven times as many macro-bubbles [median: 218 vs. 28, p = .001], high volumes of macrobubbles were not found to be significantly associated with new CMBs, new ischaemic lesions, or POCD. The odds of acquiring new CMBs increased by approximately 5% [95% CI: 1 to 10%] for every embolus detected in the first minute after the release of the aortic cross-clamp (AxC). Logistic regression models also confirmed previous findings that cardiopulmonary bypass time and valve surgery were significant predictors for new CMBs (both p = .03). Logistic regression analysis estimated an increase in the odds of acquiring new CMBs of 6% [95% CI: 1 to 12%] for every minute of bypass time over 91 mins. CONCLUSIONS: This small study provides new information about the properties and numbers of bubbles entering the brain during surgery, but found no evidence to substantiate a direct link between large numbers of macrobubbles and adverse cognitive or MR outcome. Clinical Trial Registration URL - http://www.isrctn.com. Unique identifier: 66022965.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Embolia , Adulto , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Humanos , Imageamento por Ressonância Magnética , Testes Neuropsicológicos , Ultrassonografia Doppler Transcraniana
9.
Cancer Immunol Res ; 8(5): 618-631, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32127390

RESUMO

Vaccinia virus (VACV) is a double-stranded DNA virus that devotes a large portion of its 200 kbp genome to suppressing and manipulating the immune response of its host. Here, we investigated how targeted removal of immunomodulatory genes from the VACV genome impacted immune cells in the tumor microenvironment with the intention of improving the therapeutic efficacy of VACV in breast cancer. We performed a head-to-head comparison of six mutant oncolytic VACVs, each harboring deletions in genes that modulate different cellular pathways, such as nucleotide metabolism, apoptosis, inflammation, and chemokine and interferon signaling. We found that even minor changes to the VACV genome can impact the immune cell compartment in the tumor microenvironment. Viral genome modifications had the capacity to alter lymphocytic and myeloid cell compositions in tumors and spleens, PD-1 expression, and the percentages of virus-targeted and tumor-targeted CD8+ T cells. We observed that while some gene deletions improved responses in the nonimmunogenic 4T1 tumor model, very little therapeutic improvement was seen in the immunogenic HER2/neu TuBo model with the various genome modifications. We observed that the most promising candidate genes for deletion were those that interfere with interferon signaling. Collectively, this research helped focus attention on the pathways that modulate the immune response in the context of VACV oncolytic virotherapy. They also suggest that the greatest benefits to be obtained with these treatments may not always be seen in "hot tumors."


Assuntos
Neoplasias da Mama/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunomodulação , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/imunologia , Microambiente Tumoral/imunologia , Vaccinia virus/imunologia , Animais , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Biotechnol Genet Eng Rev ; 34(1): 107-121, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29779454

RESUMO

The past few years have seen a rash of emerging viral diseases, including the Ebola crisis in West Africa, the pandemic spread of chikungunya, and the recent explosion of Zika in South America. Vaccination is the most reliable and cost-effective method of control of infectious diseases, however, there is often a long delay in production and approval in getting new vaccines to market. Vaccinia was the first vaccine developed for the successful eradication of smallpox and has properties that make it attractive as a universal vaccine vector. Vaccinia can cause severe complications, particularly in immune suppressed recipients that would limit its utility, but nonreplicating and attenuated strains have been developed. Modified vaccinia Ankara is nonreplicating in human cells and can be safely given to immune suppressed individuals. Vaccinia has recently been modified for use as an oncolytic treatment for cancer therapy. These new vaccinia vectors are replicating; but have been attenuated and could prove useful as a universal vaccine carrier as many of these are in clinical trials for cancer therapy. This article reviews the development of a universal vaccinia vaccine platform for emerging diseases or biothreat agents, based on nonreplicating or live attenuated vaccinia viruses.


Assuntos
Doenças Transmissíveis Emergentes/prevenção & controle , Vaccinia virus/imunologia , Vacinas Virais/imunologia , Viroses/prevenção & controle , Animais , Humanos , Hospedeiro Imunocomprometido , Vacinas Atenuadas/imunologia , Vacinas de DNA , Vacínia/prevenção & controle , Vaccinia virus/efeitos dos fármacos , Replicação Viral
11.
PLoS One ; 13(1): e0188453, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29351298

RESUMO

Edward Jenner and his contemporaries believed that his variolae vaccinae originated in horses and molecular analyses show that modern vaccinia virus (VACV) strains share common ancestry with horsepox virus (HPXV). Given concerns relating to the toxicity of modern VACV vaccines, we asked whether an HPXV-based vaccine might provide a superior alternative. Since HPXV may be extinct and the only specimen of HPXV that has been identified is unavailable for investigation, we explored whether HPXV could be obtained by large-scale gene synthesis. Ten large (10-30 kb) fragments of DNA were synthesized based on the HPXV sequence along with two 157 nt VACV terminal sequences, and were recombined into a live synthetic chimeric HPXV (scHPXV) in cells infected with Shope fibroma virus (SFV). Sequencing of the 212 kbp scHPXV confirmed it encoded a faithful copy of the input DNA. We believe this is the first complete synthesis of a poxvirus using synthetic biology approaches. This scHPXV produced smaller plaques, produced less extracellular virus and exhibited less virulence in mice than VACV, but still provided vaccine protection against a lethal VACV challenge. Collectively, these findings support further development of scHPXV as a novel replication-proficient smallpox vaccine.


Assuntos
DNA/química , Orthopoxvirus/imunologia , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Administração Intranasal , Animais , Chlorocebus aethiops , Células HeLa , Humanos , Camundongos , Orthopoxvirus/crescimento & desenvolvimento , Orthopoxvirus/patogenicidade , Vacinas Sintéticas/administração & dosagem , Células Vero , Vacinas Virais/administração & dosagem , Virulência
12.
Front Oncol ; 7: 229, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018771

RESUMO

The rapid growth of tumors depends upon elevated levels of dNTPs, and while dNTP concentrations are tightly regulated in normal cells, this control is often lost in transformed cells. This feature of cancer cells has been used to advantage to develop oncolytic DNA viruses. DNA viruses employ many different mechanisms to increase dNTP levels in infected cells, because the low concentration of dNTPs found in non-cycling cells can inhibit virus replication. By disrupting the virus-encoded gene(s) that normally promote dNTP biosynthesis, one can assemble oncolytic versions of these agents that replicate selectively in cancer cells. This review covers the pathways involved in dNTP production, how they are dysregulated in cancer cells, and the various approaches that have been used to exploit this biology to improve the tumor specificity of oncolytic viruses. In particular, we compare and contrast the ways that the different types of oncolytic virus candidates can directly modulate these processes. We limit our review to the large DNA viruses that naturally encode homologs of the cellular enzymes that catalyze dNTP biogenesis. Lastly, we consider how this knowledge might guide future development of oncolytic viruses.

13.
PLoS One ; 12(3): e0173056, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28257484

RESUMO

It has been well established that many vaccinia virus proteins suppress host antiviral pathways by targeting the transcription of antiviral proteins, thus evading the host innate immune system. However, whether viral proteins have an effect on the host's overall cellular transcription is less understood. In this study we investigated the regulation of heterochromatin during vaccinia virus infection. Heterochromatin is a highly condensed form of chromatin that is less transcriptionally active and characterized by methylation of histone proteins. We examined the change in methylation of two histone proteins, H3 and H4, which are major markers of heterochromatin, during the course of viral infection. Using immunofluorescence microscopy and flow cytometry we were able to track the overall change in the methylated levels of H3K9 and H4K20. Our results suggest that there is significant increase in methylation of H3K9 and H4K20 during Orthopoxviruses infection compared to mock-infected cells. However, this effect was not seen when we infected cells with Leporipoxviruses. We further screened several vaccinia virus single and multi-gene deletion mutant and identified the vaccinia virus gene K7R as a contributor to the increase in cellular histone methylation during infection.


Assuntos
Epigênese Genética , Fibroblastos/virologia , Histonas/metabolismo , Vaccinia virus/genética , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Montagem e Desmontagem da Cromatina , Embrião de Mamíferos , Fibroblastos/metabolismo , Heterocromatina/metabolismo , Heterocromatina/ultraestrutura , Histonas/genética , Interações Hospedeiro-Patógeno , Humanos , Leporipoxvirus/genética , Leporipoxvirus/metabolismo , Metilação , Microscopia de Fluorescência , Mutação , Cultura Primária de Células , Vaccinia virus/metabolismo , Proteínas Virais/genética
14.
EMBO Mol Med ; 9(5): 638-654, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28289079

RESUMO

Bladder cancer has a recurrence rate of up to 80% and many patients require multiple treatments that often fail, eventually leading to disease progression. In particular, standard of care for high-grade disease, Bacillus Calmette-Guérin (BCG), fails in 30% of patients. We have generated a novel oncolytic vaccinia virus (VACV) by mutating the F4L gene that encodes the virus homolog of the cell-cycle-regulated small subunit of ribonucleotide reductase (RRM2). The F4L-deleted VACVs are highly attenuated in normal tissues, and since cancer cells commonly express elevated RRM2 levels, have tumor-selective replication and cell killing. These F4L-deleted VACVs replicated selectively in immune-competent rat AY-27 and xenografted human RT112-luc orthotopic bladder cancer models, causing significant tumor regression or complete ablation with no toxicity. It was also observed that rats cured of AY-27 tumors by VACV treatment developed anti-tumor immunity as evidenced by tumor rejection upon challenge and by ex vivo cytotoxic T-lymphocyte assays. Finally, F4L-deleted VACVs replicated in primary human bladder cancer explants. Our findings demonstrate the enhanced safety and selectivity of F4L-deleted VACVs, with application as a promising therapy for patients with BCG-refractory cancers and immune dysregulation.


Assuntos
Deleção de Genes , Vírus Oncolíticos/genética , Ribonucleotídeo Redutases/genética , Neoplasias da Bexiga Urinária/terapia , Vaccinia virus/genética , Proteínas Virais/genética , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Imunidade , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia Viral Oncolítica , Vírus Oncolíticos/imunologia , Vírus Oncolíticos/fisiologia , Ratos , Ribonucleotídeo Redutases/imunologia , Células Tumorais Cultivadas , Bexiga Urinária/imunologia , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia , Vaccinia virus/imunologia , Vaccinia virus/fisiologia , Proteínas Virais/imunologia , Replicação Viral
15.
PLoS One ; 10(4): e0122166, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25837519

RESUMO

BACKGROUND: Thousands of air bubbles enter the cerebral circulation during cardiac surgery, but whether high numbers of bubbles explain post-operative cognitive decline is currently controversial. This study estimates the size distribution of air bubbles and volume of air entering the cerebral arteries intra-operatively based on analysis of transcranial Doppler ultrasound data. METHODS: Transcranial Doppler ultrasound recordings from ten patients undergoing heart surgery were analysed for the presence of embolic signals. The backscattered intensity of each embolic signal was modelled based on ultrasound scattering theory to provide an estimate of bubble diameter. The impact of showers of bubbles on cerebral blood-flow was then investigated using patient-specific Monte-Carlo simulations to model the accumulation and clearance of bubbles within a model vasculature. RESULTS: Analysis of Doppler ultrasound recordings revealed a minimum of 371 and maximum of 6476 bubbles entering the middle cerebral artery territories during surgery. This was estimated to correspond to a total volume of air ranging between 0.003 and 0.12 mL. Based on analysis of a total of 18667 embolic signals, the median diameter of bubbles entering the cerebral arteries was 33 µm (IQR: 18 to 69 µm). Although bubble diameters ranged from ~5 µm to 3.5 mm, the majority (85%) were less than 100 µm. Numerous small bubbles detected during cardiopulmonary bypass were estimated by Monte-Carlo simulation to be benign. However, during weaning from bypass, showers containing large macro-bubbles were observed, which were estimated to transiently affect up to 2.2% of arterioles. CONCLUSIONS: Detailed analysis of Doppler ultrasound data can be used to provide an estimate of bubble diameter, total volume of air, and the likely impact of embolic showers on cerebral blood flow. Although bubbles are alarmingly numerous during surgery, our simulations suggest that the majority of bubbles are too small to be harmful.


Assuntos
Encéfalo/irrigação sanguínea , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Artérias Cerebrais/diagnóstico por imagem , Embolia Aérea/diagnóstico por imagem , Embolia Aérea/etiologia , Idoso , Circulação Cerebrovascular , Embolia Aérea/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Tamanho da Partícula , Ultrassonografia Doppler Transcraniana
16.
Health Expect ; 18(4): 504-15, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23418785

RESUMO

BACKGROUND: English NHS guidance emphasizes the importance of involving users in commissioning cancer services. There has been considerable previous research on involving users in service improvement, but not on involvement in commissioning cancer services. OBJECTIVE: To identify how users were involved as local cancer service commissioning projects sought to implement good practice and what has been learned. DESIGN: Participatory evaluation with four qualitative case studies based on semi-structured interviews with project stakeholders, observation and documentary analysis. Users were involved in every stage from design to analysis and reporting. SETTING AND PARTICIPANTS: Four English cancer network user involvement in commissioning projects, with 22 stakeholders interviewed. RESULTS: Thematic analysis identified nine themes: initial involvement, preparation for the role, ability to exercise voice, consistency and continuity, where decisions are made, closing the feedback loop, assessing impact, value of experience and diversity. DISCUSSION: Our findings on the impact of user involvement in commissioning cancer services are consistent with other findings on user involvement in service improvement, but highlight the specific issues for involvement in commissioning. Key points include the different perspectives users and professionals may have on the impact of user involvement in commissioning, the time necessary for meaningful involvement, the importance of involving users from the beginning and the value of senior management and PPI facilitator support and training. CONCLUSIONS: Users can play an important role in commissioning cancer services, but their ability to do so is contingent on resources being available to support them.


Assuntos
Comportamento Cooperativo , Gerenciamento Clínico , Neoplasias/terapia , Participação do Paciente/métodos , Medicina Estatal/organização & administração , Inglaterra , Humanos , Capacitação em Serviço , Educação de Pacientes como Assunto , Qualidade da Assistência à Saúde , Fatores de Tempo
17.
J Virol ; 87(8): 4623-41, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23408614

RESUMO

Myxoma virus (MYXV) provides an important model for investigating host-pathogen interactions. Recent studies have also highlighted how mutations in transformed human cells can expand the host range of this rabbit virus. Although virus growth depends upon interactions between virus and host proteins, the nature of these interactions is poorly understood. To address this matter, we performed small interfering RNA (siRNA) screens for genes affecting MYXV growth in human MDA-MB-231 cells. By using siRNAs targeting the whole human genome (21,585 genes), a subset of human phosphatases and kinases (986 genes), and also a custom siRNA library targeting selected statistically significant genes ("hits") and nonsignificant genes ("nonhits") of the whole human genome screens (88 genes), we identified 711 siRNA pools that promoted MYXV growth and 333 that were inhibitory. Another 32 siRNA pools (mostly targeting the proteasome) were toxic. The overall overlap in the results was about 25% for the hits and 75% for the nonhits. These pro- and antiviral genes can be clustered into pathways and related groups, including well-established inflammatory and mitogen-activated protein kinase pathways, as well as clusters relating to ß-catenin and the Wnt signaling cascade, the cell cycle, and cellular metabolism. The validity of a subset of these hits was independently confirmed. For example, treating cells with siRNAs that might stabilize cells in G(1), or inhibit passage into S phase, stimulated MYXV growth, and these effects were reproduced by trapping cells at the G(1)/S boundary with an inhibitor of cyclin-dependent kinases 4/6. By using 2-deoxy-D-glucose and plasmids carrying the gene for phosphofructokinase, we also confirmed that infection is favored by aerobic glycolytic metabolism. These studies provide insights into how the growth state and structure of cells affect MYXV growth and how these factors might be manipulated to advantage in oncolytic virus therapy.


Assuntos
Interações Hospedeiro-Patógeno , Biologia Molecular/métodos , Myxoma virus/fisiologia , Interferência de RNA , Replicação Viral , Linhagem Celular , Genoma Humano , Humanos
18.
PLoS One ; 8(12): e84134, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391902

RESUMO

Myxoma virus (MYXV) is one of many animal viruses that exhibit oncolytic properties in transformed human cells. Compared to orthopoxviruses like vaccinia (VACV), MYXV spreads inefficiently, which could compromise its use in treating tumors and their associated metastases. The VACV F11 protein promotes virus exit and rapid spread by inhibiting Rho signalling, which results in a disruption of cortical actin. We have previously shown that although MYXV lacks an F11 homolog, the F11L gene can be introduced into MYXV promoting the spread of this Leporipoxvirus in natural host cells. Here we show that the F11-encoding (F11L(+)) MYXV strain replicates to higher levels in a number of human cancer cells. We also show that F11L(+) MYXV induces better tumor control and prolonged survival of mice bearing MDA-MB-231 cancer cells. Furthermore, we show that this virus also spreads more efficiently from the site of growth in one injected tumor, to a second untreated tumor. While we focused mostly on the use of a modified MYXV we were able to show that the effects of F11 on MYXV growth in cancer cells could be mimicked through the use of pharmacological inhibition or siRNA-mediated silencing of key regulators of cortical actin (RhoA, RhoC, mDia1, or LIMK2). These data suggest that it may be possible to increase the oncolytic efficacy of wild-type MYXV using chemical inhibitors of RhoA/C or their downstream targets. Furthermore, since all viruses must overcome barriers to exit posed by structures like cortical actin, these findings suggest that the oncolytic activity of other viruses may be enhanced through similar strategies.


Assuntos
Citoesqueleto de Actina/química , Amidas/farmacologia , Neoplasias da Mama/terapia , Myxoma virus/fisiologia , Terapia Viral Oncolítica , Piridinas/farmacologia , RNA Interferente Pequeno/genética , Proteínas Virais/genética , Citoesqueleto de Actina/genética , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Sobrevivência Celular , Terapia Combinada , Inibidores Enzimáticos/farmacologia , Feminino , Forminas , Humanos , Quinases Lim/antagonistas & inibidores , Quinases Lim/genética , Quinases Lim/metabolismo , Camundongos , Carga Viral , Proteínas Virais/metabolismo , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC
19.
J Virol ; 86(13): 7167-79, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22514354

RESUMO

Vaccinia virus (VACV) produces large plaques consisting of a rapidly expanding ring of infected cells surrounding a lytic core, whereas myxoma virus (MYXV) produces small plaques that resemble a focus of transformed cells. This is odd, because bioinformatics suggests that MYXV carries homologs of nearly all of the genes regulating Orthopoxvirus attachment, entry, and exit. So why does MYXV produce foci? One notable difference is that MYXV-infected cells produce few of the actin microfilaments that promote VACV exit and spread. This suggested that although MYXV carries homologs of the required genes (A33R, A34R, A36R, and B5R), they are dysfunctional. To test this, we produced MYXV recombinants expressing these genes, but we could not enhance actin projectile formation even in cells expressing all four VACV proteins. Another notable difference between these viruses is that MYXV lacks a homolog of the F11L gene. F11 inhibits the RhoA-mDia signaling that maintains the integrity of the cortical actin layer. We constructed an MYXV strain encoding F11L and observed that, unlike wild-type MYXV, the recombinant virus disrupted actin stress fibers and produced plaques up to 4-fold larger than those of controls, and these plaques expanded ∼6-fold faster. These viruses also grew to higher titers in multistep growth conditions, produced higher levels of actin projectiles, and promoted infected cell movement, although neither process was to the extent of that observed in VACV-infected cells. Thus, one reason for why MYXV produces small plaques is that it cannot spread via actin filaments, although the reason for this deficiency remains obscure. A second reason is that leporipoxviruses lack vaccinia's capacity to disrupt cortical actin.


Assuntos
Myxoma virus/crescimento & desenvolvimento , Myxoma virus/genética , Ensaio de Placa Viral , Proteínas Virais/genética , Proteínas Virais/metabolismo , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinação Genética , Fibras de Estresse/metabolismo , Carga Viral
20.
J Morphol ; 273(1): 88-102, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21935975

RESUMO

Among tetrapods, evidence for postrenal modification of the urine by the distal digestive tract (including the colon and cloaca) is highly variable. Birds and bladderless reptiles are of interest because the colon and cloaca represent the only sites from which water and ions can be reclaimed from the urine secreted by the kidney. For animals occupying desiccating environments (e.g., deserts and marine environments), postrenal modification of the urine may directly contribute to the maintenance of hypo-osmotic body fluids. We compared the morphology and distribution of key proteins in the colon, cloaca, and urogenital ducts of watersnakes from marine (Nerodia clarkii clarkii) and freshwater (Nerodia fasciata) habitats. Specifically, we examined the epithelia of each tissue for evidence of mucus production by examining the distribution of mucopolysaccharides, and for evidence of water/ion regulation by examining the distribution of Na(+) /K(+) -ATPase (NKA), Na(+) /K(+) /Cl(-) cotransporter (NKCC), and aquaporin 3 (AQP3). NKCC localized to the basolateral epithelium of the colon, urodeal sphincter, and proctodeum, consistent with a role in secretion of Na(+), Cl(-) , and K(+) from the tissue, but NKA was not detected in the colon or any compartment of the cloaca. Interestingly, NKA was detected in the basolateral epithelium of the ureters, suggesting the urothelium may play a role in active ion transport. AQP3 was detected in the ureters and coprodeal complex, consistent with a role in urinary and fecal dehydration or, potentially, in the production of the watery component of the mucus secreted by the coprodeal complex. Since no differences in general cloacal morphology, production of mucus, or the distribution of ion transporters/water channels were detected between the two species, cloacal osmoregulation may either be regulated by proteins not examined in this study or may not be responsible for the differential success of N. c. clarkii and N. fasciata in marine habitats.


Assuntos
Cloaca/metabolismo , Colo/metabolismo , Proteínas/fisiologia , Serpentes/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/fisiologia , Animais , Aquaporina 3/metabolismo , Aquaporina 3/fisiologia , Cloaca/fisiologia , Colo/fisiologia , Desidratação/metabolismo , Enterobacter/metabolismo , Enterobacter/fisiologia , Água Doce , Transporte de Íons/fisiologia , Íons/metabolismo , Rim/metabolismo , Rim/fisiologia , Muco/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio , Água/metabolismo , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA