Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 78(Pt 5): 623-632, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35503210

RESUMO

The structure of the antigen-binding fragment (Fab) of mouse monoclonal antibody 7H2.2 in complex with a 15-residue fragment from the metalloproteinase sperm acrosomal SLLP1 binding protein (SAS1B), which is a molecular and cellular candidate for both cancer therapy and female contraception, has been determined at 2.75 Šresolution by single-crystal X-ray diffraction. Although the crystallization conditions contained the final 148 C-terminal residues of SAS1B, the Fab was observed to crystallize in complex with a 15-residue fragment corresponding to one of only two elements of secondary structure that are predicted to be ordered within the C-terminal region of SAS1B. The antigen forms an amphipathic α-helix that binds the 7H2.2 combining site via hydrophilic residues in an epitope that spans the length of the antigen α-helix, with only two CH-π interactions observed along the edge of the interface between the antibody and antigen. Interestingly, the paratope contains two residues mutated away from the germline (YL32F and YH58R), as well as a ProH96-ThrH97-AspH98-AspH99 insertion within heavy chain CDR3. The intact 7H2.2 antibody exhibits high affinity for the SAS1B antigen, with 1:1 binding and nanomolar affinity for both the SAS1B C-terminal construct used for crystallization (3.38 ± 0.59 nM) and a 15-amino-acid synthetic peptide construct corresponding to the helical antigen observed within the crystal structure (1.60 ± 0.31 nM). The SAS1B-antibody structure provides the first structural insight into any portion of the subdomain architecture of the C-terminal region of the novel cancer-oocyte tumor surface neoantigen SAS1B and provides a basis for the targeted use of SAS1B.


Assuntos
Anticorpos Monoclonais , Neoplasias , Animais , Anticorpos Monoclonais/química , Sítios de Ligação de Anticorpos , Cristalografia por Raios X , Feminino , Fragmentos Fab das Imunoglobulinas/química , Camundongos , Oócitos/metabolismo , Conformação Proteica
2.
Glycobiology ; 28(8): 624-636, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29873711

RESUMO

Homologous glycosyltransferases GTA and GTB perform the final step in human ABO(H) blood group A and B antigen synthesis by transferring the sugar moiety from donor UDP-GalNAc/UDP-Gal to the terminal H antigen disaccharide acceptor. Like other GT-A fold family 6 glycosyltransferases, GTA and GTB undergo major conformational changes in two mobile regions, the C-terminal tail and internal loop, to achieve the closed, catalytic state. These changes are known to establish a salt bridge network among conserved active site residues Arg188, Asp211 and Asp302, which move to accommodate a series of discrete donor conformations while promoting loop ordering and formation of the closed enzyme state. However, the individual significance of these residues in linking these processes remains unclear. Here, we report the kinetics and high-resolution structures of GTA/GTB mutants of residues 188 and 302. The structural data support a conserved salt bridge network critical to mobile polypeptide loop organization and stabilization of the catalytically competent donor conformation. Consistent with the X-ray crystal structures, the kinetic data suggest that disruption of this salt bridge network has a destabilizing effect on the transition state, emphasizing the importance of Arg188 and Asp302 in the glycosyltransfer reaction mechanism. The salt bridge network observed in GTA/GTB structures during substrate binding appears to be conserved not only among other Carbohydrate Active EnZyme family 6 glycosyltransferases but also within both retaining and inverting GT-A fold glycosyltransferases. Our findings augment recently published crystal structures, which have identified a correlation between donor substrate conformational changes and mobile loop ordering.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Glicosiltransferases/química , Sistema ABO de Grupos Sanguíneos/genética , Sistema ABO de Grupos Sanguíneos/metabolismo , Arginina/química , Arginina/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Humanos , Domínios Proteicos
3.
J Biol Chem ; 291(46): 24085-24095, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27601469

RESUMO

Aberrant glycosylation and the overexpression of specific carbohydrate epitopes is a hallmark of many cancers, and tumor-associated oligosaccharides are actively investigated as targets for immunotherapy and diagnostics. Wisteria floribunda agglutinin (WFA) is a legume lectin that recognizes terminal N-acetylgalactosaminides with high affinity. WFA preferentially binds the disaccharide LacdiNAc (ß-d-GalNAc-[1→4]-d-GlcNAc), which is associated with tumor malignancy in leukemia, prostate, pancreatic, ovarian, and liver cancers and has shown promise in cancer glycobiomarker detection. The mechanism of specificity for WFA recognition of LacdiNAc is not fully understood. To address this problem, we have determined affinities and structure of WFA in complex with GalNAc and LacdiNAc. Affinities toward Gal, GalNAc, and LacdiNAc were measured via surface plasmon resonance, yielding KD values of 4.67 × 10-4 m, 9.24 × 10-5 m, and 5.45 × 10-6 m, respectively. Structures of WFA in complex with LacdiNAc and GalNAc have been determined to 1.80-2.32 Å resolution. These high resolution structures revealed a hydrophobic groove complementary to the GalNAc and, to a minor extent, to the back-face of the GlcNAc sugar ring. Remarkably, the contribution of this small hydrophobic surface significantly increases the observed affinity for LacdiNAc over GalNAc. Tandem MS sequencing confirmed the presence of two isolectin forms in commercially available WFA differing only in the identities of two amino acids. Finally, the WFA carbohydrate binding site is similar to a homologous lectin isolated from Vatairea macrocarpa in complex with GalNAc, which, unlike WFA, binds not only αGalNAc but also terminal Ser/Thr O-linked αGalNAc (Tn antigen).


Assuntos
Biomarcadores Tumorais/química , Lactose/análogos & derivados , Lectinas de Plantas/química , Wisteria/química , Cristalografia por Raios X , Humanos , Lactose/química , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína
4.
J Biol Chem ; 290(45): 27040-27052, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26374898

RESUMO

Homologous glycosyltransferases α-(1→3)-N-acetylgalactosaminyltransferase (GTA) and α-(1→3)-galactosyltransferase (GTB) catalyze the final step in ABO(H) blood group A and B antigen synthesis through sugar transfer from activated donor to the H antigen acceptor. These enzymes have a GT-A fold type with characteristic mobile polypeptide loops that cover the active site upon substrate binding and, despite intense investigation, many aspects of substrate specificity and catalysis remain unclear. The structures of GTA, GTB, and their chimeras have been determined to between 1.55 and 1.39 Å resolution in complex with natural donors UDP-Gal, UDP-Glc and, in an attempt to overcome one of the common problems associated with three-dimensional studies, the non-hydrolyzable donor analog UDP-phosphono-galactose (UDP-C-Gal). Whereas the uracil moieties of the donors are observed to maintain a constant location, the sugar moieties lie in four distinct conformations, varying from extended to the "tucked under" conformation associated with catalysis, each stabilized by different hydrogen bonding partners with the enzyme. Further, several structures show clear evidence that the donor sugar is disordered over two of the observed conformations and so provide evidence for stepwise insertion into the active site. Although the natural donors can both assume the tucked under conformation in complex with enzyme, UDP-C-Gal cannot. Whereas UDP-C-Gal was designed to be "isosteric" with natural donor, the small differences in structure imposed by changing the epimeric oxygen atom to carbon appear to render the enzyme incapable of binding the analog in the active conformation and so preclude its use as a substrate mimic in GTA and GTB.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Galactosiltransferases/química , N-Acetilgalactosaminiltransferases/química , Sistema ABO de Grupos Sanguíneos/genética , Sistema ABO de Grupos Sanguíneos/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Humanos , Ligação de Hidrogênio , Hidrólise , Modelos Moleculares , Mimetismo Molecular , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Estereoisomerismo , Especificidade por Substrato
5.
Glycobiology ; 25(9): 920-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26033938

RESUMO

Carbohydrate antigens are valuable as components of vaccines for bacterial infectious agents and human immunodeficiency virus (HIV), and for generating immunotherapeutics against cancer. The crystal structures of anti-carbohydrate antibodies in complex with antigen reveal the key features of antigen recognition and provide information that can guide the design of vaccines, particularly synthetic ones. This review summarizes structural features of anti-carbohydrate antibodies to over 20 antigens, based on six categories of glyco-antigen: (i) the glycan shield of HIV glycoproteins; (ii) tumor epitopes; (iii) glycolipids and blood group A antigen; (iv) internal epitopes of bacterial lipopolysaccharides; (v) terminal epitopes on polysaccharides and oligosaccharides, including a group of antibodies to Kdo-containing Chlamydia epitopes; and (vi) linear homopolysaccharides.


Assuntos
Anticorpos Antibacterianos/imunologia , Anticorpos Antineoplásicos/imunologia , Anticorpos Antivirais/imunologia , Carboidratos/imunologia , Epitopos/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antibacterianos/química , Anticorpos Antineoplásicos/química , Anticorpos Antivirais/química , Carboidratos/química , Epitopos/química , Epitopos/genética , Humanos , Dados de Sequência Molecular
6.
Glycobiology ; 24(3): 237-46, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24265507

RESUMO

The homologous human ABO(H) A and B blood group glycosyltransferases GTA and GTB have two mobile polypeptide loops surrounding their active sites that serve to allow substrate access and product egress and to recognize and sequester substrates for catalysis. Previous studies have established that these enzymes can move from the "open" state to the "semi-closed" then "closed" states in response to addition of a substrate. The contribution of electrostatic interactions to these conformational changes has now been demonstrated by the determination at various pH of the structures of GTA, GTB and the chimeric enzyme ABBA. At near-neutral pH, GTA displays the closed state in which both mobile loops order around the active site, whereas ABBA and GTB display the open state. At low pH, the apparent protonation of the DXD motif in GTA leads to the expulsion of the donor analog to yield the open state, whereas at high pH, both ABBA and GTB form the semi-closed state in which the first mobile loop becomes an ordered α-helix. Step-wise deprotonation of GTB in increments of 0.5 between pH 6.5 and 10.0 shows that helix ordering is gradual, which indicates that the formation of the semi-closed state is dependent on electrostatic forces consistent with the binding of substrate. Spectropolarimetric studies of the corresponding stand-alone peptide in solution reveal no tendency toward helix formation from pH 7.0 to 10.0, which shows that pH-dependent stability is a product of the larger protein environment and underlines the importance of substrate in active site ordering.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Glicosiltransferases/química , Sequência de Aminoácidos , Domínio Catalítico , Humanos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Conformação Proteica , Eletricidade Estática
7.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 3): 268-76, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22349229

RESUMO

The human ABO(H) A and B blood group glycosyltransferases GTA and GTB differ by only four amino acids, yet this small dissimilarity is responsible for significant differences in biosynthesis, kinetics and structure. Like other glycosyltransferases, these two enzymes have been shown to recognize substrates through dramatic conformational changes in mobile polypeptide loops surrounding the active site. Structures of GTA, GTB and several chimeras determined by single-crystal X-ray diffraction demonstrate a range of susceptibility to the choice of cryoprotectant, in which the mobile polypeptide loops can be induced by glycerol to form the ordered closed conformation associated with substrate recognition and by MPD [hexylene glycol, (±)-2-methyl-2,4-pentanediol] to hinder binding of substrate in the active site owing to chelation of the Mn²âº cofactor and thereby adopt the disordered open state. Glycerol is often avoided as a cryoprotectant when determining the structures of carbohydrate-active enzymes as it may act as a competitive inhibitor for monosaccharide ligands. Here, it is shown that the use of glycerol as a cryoprotectant can additionally induce significant changes in secondary structure, a phenomenon that could apply to any class of protein.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Crioprotetores/química , Glicerol/química , Glicóis/química , Glicosiltransferases/química , Sistema ABO de Grupos Sanguíneos/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Glicosiltransferases/metabolismo , Modelos Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato
8.
J Mol Biol ; 402(2): 399-411, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20655926

RESUMO

A common feature in the structures of GT-A-fold-type glycosyltransferases is a mobile polypeptide loop that has been observed to participate in substrate recognition and enclose the active site upon substrate binding. This is the case for the human ABO(H) blood group B glycosyltransferase GTB, where amino acid residues 177-195 display significantly higher levels of disorder in the unliganded state than in the fully liganded state. Structural studies of mutant enzymes GTB/C80S/C196S and GTB/C80S/C196S/C209S at resolutions ranging from 1.93 to 1.40 A display the opposite trend, where the unliganded structures show nearly complete ordering of the mobile loop residues that is lost upon substrate binding. In the liganded states of the mutant structures, while the UDP moiety of the donor molecule is observed to bind in the expected location, the galactose moiety is observed to bind in a conformation significantly different from that observed for the wild-type chimeric structures. Although this would be expected to impede catalytic turnover, the kinetics of the transfer reaction are largely unaffected. These structures demonstrate that the enzymes bind the donor in a conformation more similar to the dominant solution rotamer and facilitate its gyration into the catalytically competent form. Further, by preventing active-site closure, these structures provide a basis for recently observed cooperativity in substrate binding. Finally, the mutation of C80S introduces a fully occupied UDP binding site at the enzyme dimer interface that is observed to be dependent on the binding of H antigen acceptor analog.


Assuntos
Substituição de Aminoácidos/genética , Domínio Catalítico , Cisteína/genética , Galactosiltransferases/química , Galactosiltransferases/metabolismo , Mutação de Sentido Incorreto , Serina/genética , Sistema ABO de Grupos Sanguíneos/metabolismo , Cristalografia por Raios X , Galactosiltransferases/genética , Humanos , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Difosfato de Uridina/metabolismo
9.
Proc Natl Acad Sci U S A ; 107(22): 10056-61, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20479270

RESUMO

Aberrant glycosylation and the overexpression of certain carbohydrate moieties is a consistent feature of cancers, and tumor-associated oligosaccharides are actively investigated as targets for immunotherapy. One of the most common aberrations in glycosylation patterns is the presentation of a single O-linked N-acetylgalactosamine on a threonine or serine residue known as the "Tn antigen." Whereas the ubiquitous nature of Tn antigens on cancers has made them a natural focus of vaccine research, such carbohydrate moieties are not always tumor-specific and have been observed on embryonic and nonmalignant adult tissue. Here we report the structural basis of binding of a complex of a monoclonal antibody (237mAb) with a truly tumor-specific glycopeptide containing the Tn antigen. In contrast to glycopeptide-specific antibodies in complex with simple peptides, 237mAb does not recognize a conformational epitope induced in the peptide by sugar substitution. Instead, 237mAb uses a pocket coded by germ-line genes to completely envelope the carbohydrate moiety itself while interacting with the peptide moiety in a shallow groove. Thus, 237mAb achieves its striking tumor specificity, with no observed physiological cross-reactivity to the unglycosylated peptide or the free glycan, by a combination of multiple weak but specific interactions to both the peptide and to the glycan portions of the antigen.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Animais , Anticorpos Monoclonais , Afinidade de Anticorpos , Especificidade de Anticorpos , Complexo Antígeno-Anticorpo/química , Cristalografia por Raios X , Epitopos/química , Glicopeptídeos/química , Glicopeptídeos/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/química , Técnicas In Vitro , Camundongos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Eletricidade Estática , Ressonância de Plasmônio de Superfície
10.
J Biol Chem ; 283(15): 10097-108, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18192272

RESUMO

The final step in the enzymatic synthesis of the ABO(H) blood group A and B antigens is catalyzed by two closely related glycosyltransferases, an alpha-(1-->3)-N-acetylgalactosaminyltransferase (GTA) and an alpha-(1-->3)-galactosyltransferase (GTB). Of their 354 amino acid residues, GTA and GTB differ by only four "critical" residues. High resolution structures for GTB and the GTA/GTB chimeric enzymes GTB/G176R and GTB/G176R/G235S bound to a panel of donor and acceptor analog substrates reveal "open," "semi-closed," and "closed" conformations as the enzymes go from the unliganded to the liganded states. In the open form the internal polypeptide loop (amino acid residues 177-195) adjacent to the active site in the unliganded or H antigen-bound enzymes is composed of two alpha-helices spanning Arg(180)-Met(186) and Arg(188)-Asp(194), respectively. The semi-closed and closed forms of the enzymes are generated by binding of UDP or of UDP and H antigen analogs, respectively, and show that these helices merge to form a single distorted helical structure with alternating alpha-3(10)-alpha character that partially occludes the active site. The closed form is distinguished from the semi-closed form by the ordering of the final nine C-terminal residues through the formation of hydrogen bonds to both UDP and H antigen analogs. The semi-closed forms for various mutants generally show significantly more disorder than the open forms, whereas the closed forms display little or no disorder depending strongly on the identity of residue 176. Finally, the use of synthetic analogs reveals how H antigen acceptor binding can be critical in stabilizing the closed conformation. These structures demonstrate a delicately balanced substrate recognition mechanism and give insight on critical aspects of donor and acceptor specificity, on the order of substrate binding, and on the requirements for catalysis.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Galactosiltransferases/química , N-Acetilgalactosaminiltransferases/química , Sistema ABO de Grupos Sanguíneos/genética , Sistema ABO de Grupos Sanguíneos/metabolismo , Substituição de Aminoácidos , Catálise , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Humanos , Ligação de Hidrogênio , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Estrutura Secundária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato/fisiologia , Difosfato de Uridina/química , Difosfato de Uridina/metabolismo
11.
Acta Crystallogr D Biol Crystallogr ; 63(Pt 8): 860-5, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17642512

RESUMO

The human ABO(H) blood-group antigens are oligosaccharide structures that are expressed on erythrocyte and other cell surfaces. The terminal carbohydrate residue differs between the blood types and determines the immune reactivity of this antigen. Individuals with blood type A have a terminal N-acetylgalactosamine residue and those with blood type B have a terminal galactose residue. The attachment of these terminal carbohydrates are catalyzed by two different glycosyltransferases: an alpha(1-->3)N-acetylgalactosaminyltransferase (GTA) and an alpha(1-->3)galactosyltransferase (GTB) for blood types A and B, respectively. GTA and GTB are homologous enzymes that differ in only four of 354 amino-acid residues (Arg/Gly176, Gly/Ser235, Leu/Met266 and Gly/Ala268 in GTA and GTB, respectively). Diffraction-quality crystals of GTA and GTB have previously been grown from as little as 10 mg ml(-1) stock solutions in the presence of Hg, while diffraction-quality crystals of the native enzymes require much higher concentrations of protein. The structure of a single mutant C209A has been determined in the presence and absence of heavy atoms and reveals that when mercury is complexed with Cys209 it forces a significant level of disorder in a polypeptide loop (amino acids 179-195) that is known to cover the active site of the enzyme. The observation that the more highly disordered structure is more amenable to crystallization is surprising and the derivative provides insight into the mobility of this polypeptide loop compared with homologous enzymes.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Sistema ABO de Grupos Sanguíneos/metabolismo , Galactosiltransferases/química , Galactosiltransferases/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Sistema ABO de Grupos Sanguíneos/genética , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Cisteína/genética , Cisteína/metabolismo , Galactosiltransferases/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Peptídeos/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA