Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 14(669): eabj1270, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36322632

RESUMO

Immune checkpoint blockade (ICB) has substantially improved the prognosis of patients with cancer, but the majority experiences limited benefit, supporting the need for new therapeutic approaches. Up-regulation of sialic acid-containing glycans, termed hypersialylation, is a common feature of cancer-associated glycosylation, driving disease progression and immune escape through the engagement of Siglec receptors on tumor-infiltrating immune cells. Here, we show that tumor sialylation correlates with distinct immune states and reduced survival in human cancers. The targeted removal of Siglec ligands in the tumor microenvironment, using an antibody-sialidase conjugate, enhanced antitumor immunity and halted tumor progression in several murine models. Using single-cell RNA sequencing, we revealed that desialylation repolarized tumor-associated macrophages (TAMs). We also identified Siglec-E as the main receptor for hypersialylation on TAMs. Last, we found that genetic and therapeutic desialylation, as well as loss of Siglec-E, enhanced the efficacy of ICB. Thus, therapeutic desialylation represents an immunotherapeutic approach to reshape macrophage phenotypes and augment the adaptive antitumor immune response.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Camundongos , Animais , Glicosilação , Macrófagos Associados a Tumor , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Microambiente Tumoral
2.
iScience ; 24(10): 103168, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34646995

RESUMO

Integrin alpha 2 (ITGA2) promotes cancer metastasis through selective adhesion to ECM proteins; however, the specific contribution of integrin glycosylation remains uncertain. We provide evidence that ITGA2 is a highly glycosylated transmembrane protein expressed in ovarian cancer tissue and cell lines. In-depth glycoproteomics identified predominant N- and O-glycosylation sites harboring substantially divergent ITGA2 glycosylation profiles. Generated putative ITGA2 N-glycosite mutants halted collagen and laminin binding and cells lacking N-glycosylated ITGA2 were marginally adherent to collagen, likely associated with its enhanced proteasome degradation through poly-ubiquitination. Proteomic and enrichment pathway analysis revealed increased cellular apoptosis and collagen organization in non-glycosylated ITGA2 mutant cells. Moreover, we provide evidence that ITGA2-specific sialylation is involved in selective cell-ECM binding. These results highlight the importance of glycans in regulating ITGA2 stability and ligand binding capacity which in turn modulates downstream focal adhesion and promotes cell survival in a collagen environment.

3.
Angew Chem Int Ed Engl ; 60(6): 3283-3289, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33174390

RESUMO

1 H NMR spectroscopic studies on the 1:1 adduct of the pentasaccharide Fondaparinux (FPX) and the substitution-inert polynuclear platinum complex TriplatinNC show significant modulation of geometry around the glycosidic linkages of the FPX constituent monosaccharides. FPX is a valid model for the highly sulfated cell signalling molecule heparan sulfate (HS). The conformational ratio of the 1 C4 :2 S0 forms of the FPX residue IdoA(2S) is altered from ca. 35:65 (free FPX) to ca. 75:25 in the adduct; the first demonstration of a small molecule affecting conformational changes on a HS oligosaccharide. Functional consequences of such binding are suggested to be inhibition of HS cleavage in MDA-MB-231 triple-negative breast cancer (TNBC) cells. We further describe inhibition of metastasis by TriplatinNC in the TNBC 4T1 syngeneic tumour model. Our work provides insight into a novel approach for design of platinum drugs (and coordination compounds in general) with intrinsic anti-metastatic potential.


Assuntos
Antineoplásicos/química , Glicosaminoglicanos/química , Ácido Idurônico/química , Compostos Organoplatínicos/química , Platina/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Heparitina Sulfato/química , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/farmacologia
4.
Mol Neurobiol ; 57(2): 964-975, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31646464

RESUMO

Polysialic acid (polySia), a long homopolymer of 2,8-linked sialic acids, is abundant in the embryonic brain and is restricted largely in adult brain to regions that exhibit neurogenesis and structural plasticity. In the central nervous system (CNS), polySia is highly important for cell-cell interactions, differentiation, migration and cytokine responses, which are critical neuronal functions regulating intercellular interactions that underlie immune signalling in the CNS. In recent reports, a metabolite of morphine, morphine-3-glucuronide (M3G), has been shown to cause immune signalling in the CNS. In this study, we compared the effects of neurite growth factor (NGF), lipopolysaccharide (LPS) and M3G exposure on the expression of polySia in PC12 cells using immunocytochemistry and Western blot analysis. PolySia was also extracted from stimulated cell proteins by endo-neuraminidase digestion and quantitated using fluorescent labelling followed by HPLC analysis. PolySia expression was significantly increased following NGF, M3G or LPS stimulation when compared with unstimulated cells or cells exposed to the TLR4 antagonist LPS-RS. Additionally, we analyzed the effects of test agent exposure on cell migration and the oxidative stress response of these cells in the presence and absence of polySia expression on their cell surface. We observed an increase in oxidative stress in cells without polySia as well as following M3G or LPS stimulation. Our study provides evidence that polySia expression in neuronal-like PC12 cells is influenced by M3G and LPS exposure alike, suggestive of a role of TLR4 in triggering these events.


Assuntos
Lipopolissacarídeos/farmacologia , Derivados da Morfina/farmacologia , Ácidos Siálicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Derivados da Morfina/metabolismo , Neuraminidase/metabolismo , Células PC12 , Ratos , Transdução de Sinais/imunologia
5.
Proteomics ; 19(21-22): e1800482, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31364262

RESUMO

Epithelial ovarian cancer is one of the most fatal gynecological malignancies in adult women. As studies on protein N-glycosylation have extensively reported aberrant patterns in the ovarian cancer tumor microenvironment, obtaining spatial information will uncover tumor-specific N-glycan alterations in ovarian cancer development and progression. matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is employed to investigate N-glycan distribution on formalin-fixed paraffin-embedded ovarian cancer tissue sections from early- and late-stage patients. Tumor-specific N-glycans are identified and structurally characterized by porous graphitized carbon-liquid chromatography-electrospray ionization-tandem mass spectrometry (PGC-LC-ESI-MS/MS), and then assigned to high-resolution images obtained from MALDI-MSI. Spatial distribution of 14 N-glycans is obtained by MALDI-MSI and 42 N-glycans (including structural and compositional isomers) identified and structurally characterized by LC-MS. The spatial distribution of oligomannose, complex neutral, bisecting, and sialylated N-glycan families are localized to the tumor regions of late-stage ovarian cancer patients relative to early-stage patients. Potential N-glycan diagnostic markers that emerge include the oligomannose structure, (Hex)6 + (Man)3 (GlcNAc)2 , and the complex neutral structure, (Hex)2 (HexNAc)2 (Deoxyhexose)1 + (Man)3 (GlcNAc)2 . The distribution of these markers is evaluated using a tissue microarray of early- and late-stage patients.


Assuntos
Biomarcadores Tumorais/genética , Cistadenoma Seroso/genética , Neoplasias Ovarianas/genética , Polissacarídeos/genética , Biomarcadores Tumorais/química , Cromatografia Líquida , Cistadenoma Seroso/patologia , Feminino , Genômica/métodos , Glicosilação , Humanos , Imagem Molecular , Estadiamento de Neoplasias , Neoplasias Ovarianas/patologia , Polissacarídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Microambiente Tumoral/genética
6.
mBio ; 10(4)2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289181

RESUMO

Neisseria gonorrhoeae is a significant threat to global health for which a vaccine and novel treatment options are urgently needed. Glycans expressed by human cells are commonly targeted by pathogens to facilitate interactions with the host, and thus characterization of these interactions can aid identification of bacterial receptors that can be exploited as vaccine and/or drug targets. Using glycan array analysis, we identified 247 specific interactions between N. gonorrhoeae and glycans representative of those found on human cells. Interactions included those with mannosylated, fucosylated, and sialylated glycans, glycosaminoglycans (GAGs), and glycans terminating with galactose (Gal), N-acetylgalactosamine (GalNAc), and N-acetylglucosamine (GlcNAc). By investigating the kinetics of interactions with selected glycans, we demonstrate that whole-cell N. gonorrhoeae has a high affinity for mannosylated glycans (dissociation constant [KD ], 0.14 to 0.59 µM), which are expressed on the surface of cervical and urethral epithelial cells. Using chromatography coupled with mass spectrometric (MS) analysis, we identified potential mannose-binding proteins in N. gonorrhoeae Pretreatment of cells with mannose-specific lectin (concanavalin A) or free mannose competitor (α-methyl-d-mannopyranoside) substantially reduced gonococcal adherence to epithelial cells. This suggests that N. gonorrhoeae targets mannosyl glycans to facilitate adherence to host cells and that mannosides or similar compounds have the potential to be used as a novel treatment option for N. gonorrhoeaeIMPORTANCE Multidrug-resistant strains of Neisseria gonorrhoeae are emerging worldwide, and novel treatment and prevention strategies are needed. Glycans are ubiquitously expressed by all human cells and can be specifically targeted by pathogens to facilitate association with host cells. Here we identify and characterize the N. gonorrhoeae host-glycan binding profile (glycointeractome), which revealed numerous interactions, including high-affinity binding to mannosyl glycans. We identify gonococcal potential mannose-binding proteins and show that N. gonorrhoeae uses mannosyl glycans expressed on the surface of cervical and urethral epithelia to facilitate adherence. Furthermore, a mannose-binding lectin or a mannoside compound was able to reduce this adherence. By characterizing the glycointeractome of N. gonorrhoeae, we were able to elucidate a novel mechanism used by this important pathogen to interact with human cells, and this interaction could be exploited to develop novel therapeutics to treat antibiotic-resistant gonorrhea.


Assuntos
Aderência Bacteriana/fisiologia , Colo do Útero/citologia , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Neisseria gonorrhoeae/metabolismo , Polissacarídeos/metabolismo , Uretra/citologia , Aderência Bacteriana/efeitos dos fármacos , Células Cultivadas , Concanavalina A/farmacologia , Células Epiteliais/efeitos dos fármacos , Feminino , Gonorreia/microbiologia , Humanos , Masculino , Lectina de Ligação a Manose/metabolismo , Metilglicosídeos/farmacologia , Análise em Microsséries , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/patogenicidade
7.
Proteomics Clin Appl ; 13(3): e1800099, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30367710

RESUMO

Protein glycosylation, particularly N-linked glycosylation, is a complex posttranslational modification (PTM), which plays an important role in protein folding and conformation, regulating protein stability and activity, cell-cell interaction, and cell signaling pathways. This review focuses on analytical techniques, primarily MS-based techniques, to qualitatively and quantitatively assess N-glycosylation while successfully characterizing compositional, structural, and linkage features with high specificity and sensitivity. The analytical techniques explored in this review include LC-ESI-MS/MS and MALDI time-of-flight MS (MALDI-TOF-MS), which have been used to analyze clinical samples, such as serum, plasma, ascites, and tissue. Targeting the aberrant N-glycosylation patterns observed in MALDI-MS imaging (MSI) offers a platform to visualize N-glycans in tissue-specific regions. The studies on the intra-patient (i.e., a comparison of tissue-specific regions from the same patient) and inter-patient (i.e., a comparison of tissue-specific regions between different patients) variation of early- and late-stage ovarian cancer (OC) patients identify specific N-glycan differences that improve understanding of the tumor microenvironment and potentially improve therapeutic strategies for the clinic.


Assuntos
Técnicas de Química Analítica , Neoplasias Ovarianas/metabolismo , Polissacarídeos/metabolismo , Feminino , Humanos , Espectrometria de Massas
8.
Cancer Res ; 78(11): 2952-2965, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29572228

RESUMO

The reversible transitions of cancer cells between epithelial and mesenchymal states comprise cellular and molecular processes essential for local tumor growth and respective dissemination. We report here that globoside glycosphingolipid (GSL) glycosyltransferase-encoding genes are elevated in epithelial cells and correlate with characteristic EMT signatures predictive of disease outcome. Depletion of globosides through CRISPR-Cas9-mediated deletion of the key enzyme A4GALT induces EMT, enhances chemoresistance, and increased CD24low/CD44high cells. The cholera toxin-induced mesenchymal-to-epithelial transition occurred only in cells with functional A4GALT. Cells undergoing EMT lost E-cadherin expression through epigenetic silencing at the promoter region of CDH1 However, in ΔA4GALT cells, demethylation was able to rescue E-cadherin-mediated cell-cell adhesion only in the presence of exogenous A4GALT. Overall, our data suggest another class of biomolecules vital for epithelial cancer cells and for maintaining cell integrity and function.Significance: This study highlights the essential role of glycosphingolipids in the maintenance of epithelial cancer cell properties. Cancer Res; 78(11); 2952-65. ©2018 AACR.


Assuntos
Transição Epitelial-Mesenquimal/genética , Galactosiltransferases/genética , Globosídeos/metabolismo , Glicoesfingolipídeos/genética , Animais , Antígeno CD24/genética , Sistemas CRISPR-Cas/genética , Caderinas/genética , Adesão Celular/genética , Linhagem Celular Tumoral , Epigênese Genética/genética , Células Epiteliais/patologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Receptores de Hialuronatos/genética , Regiões Promotoras Genéticas/genética , Peixe-Zebra
9.
Expert Rev Proteomics ; 15(4): 341-352, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29521143

RESUMO

INTRODUCTION: The changes in glycan structures have been attributed to disease states for several decades. The surface glycosylation pattern is a signature of physiological state of a cell. In this review we provide a link between observed substructural glycan changes and a range of diseases. Areas covered: We highlight biologically relevant glycan substructure expression in cancer, inflammation, neuronal diseases and diabetes. Furthermore, the alterations in antibody glycosylation in a disease context are described. Expert commentary: Advances in technologies, as described in Part 1 of this review have now enabled the characterization of specific glycan structural markers of a range of disease states. The requirement of including glycomics in cross-disciplinary omics studies, such as genomics, proteomics, epigenomics, transcriptomics and metabolomics towards a systems glycobiology approach to understanding disease mechanisms and management are highlighted.


Assuntos
Glicômica/métodos , Polissacarídeos/metabolismo , Glicosilação , Humanos , Espectrometria de Massas/métodos , Proteômica/métodos
10.
Mol Oncol ; 11(11): 1595-1615, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28853212

RESUMO

In the era of precision medicine, the tailoring of cancer treatment is increasingly important as we transition from organ-based diagnosis towards a more comprehensive and patient-centric molecular diagnosis. This is particularly the case for high-grade serous adenocarcinomas of the ovary and peritoneum, which are commonly diagnosed at an advanced stage, and collectively treated and managed similarly. We characterized the N- and O-glycome of serous ovarian (OC) and peritoneal cancer (PC) tissues using PGC-LC-ESI-IT-MS/MS profiling and validated the discriminatory glycans and their corresponding glyco-gene expression levels using cell lines and transcriptomic data from 232 patients. Overall, the N- and O-glycan repertoires of both cancer types were found to comprise mostly of α2,6-sialylated glycan structures, with the majority of N-glycans displaying the biantennary mono- and disialylation as well as bisecting-type biantennary glycans. The MS profiling by PGC-LC also revealed several glycan structural isomers that corresponded to LacdiNAc-type (GalNAcß1-4GlcNAc) motifs that were unique to the serous ovarian cancers and that correlated with elevated gene expression of B4GALNT3 and B4GALNT4 in patients with serous cancer. Statistical evaluation of the discriminatory glycans also revealed 13 N- and 3 O-glycans (P < 0.05) that significantly discriminated tumour-sampling sites, with LacdiNAc-type N-glycans (m/z 1205.02- and m/z 1059.42- ) being associated with ovarian-derived cancer tissue and bisecting GlcNAc-type (m/z 994.92- ) and branched N-glycans (m/z 1294.02- and m/z 1148.42- ) upregulated at the metastatic sites. Hence, we demonstrate for the first time that OC and PC display distinct molecular signatures at both their glycomic and transcriptomic levels. These signatures may have potential utility for the development of accurate diagnosis and personalized treatments.


Assuntos
Cistadenocarcinoma Seroso/genética , Glicômica , Neoplasias Ovarianas/genética , Neoplasias Peritoneais/genética , Polissacarídeos/análise , Polissacarídeos/genética , Transcriptoma , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/patologia , Feminino , Humanos , N-Acetilgalactosaminiltransferases/genética , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/patologia , Espectrometria de Massas em Tandem/métodos
11.
Anal Chem ; 88(19): 9564-9571, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27595303

RESUMO

We describe the application of a synthetically developed tetradentate ß-diketonate-europium chelate with high quantum yield (39%), for sensitive immunodetection of prostate cancer cells (DU145). MIL38 antibody, a mouse monoclonal antibody against Glypican 1, conjugated directly to the chelate via lysine residues, resulted in soluble (hydrophilic) and stable immunoconjugates. Indirect labeling of the antibody by a europium chelated secondary polyclonal antibody and a streptavidin/biotin pair was also performed. All of these bright luminescent conjugates were used to stain DU145 cells, a prostate cancer cell line, using time gated luminescence microscopy for imaging, and their performances were compared to conventional FITC labeling. For all prepared conjugates, the europium chelate in conjunction with a gated autosynchronous luminescence detector (GALD) completely suppressed the cellular autofluorescence background to allow capture of vivid, high contrast images of immune-stained cancer cells.


Assuntos
Complexos de Coordenação/farmacologia , Európio/química , Imunoconjugados/farmacologia , Técnicas Imunológicas/métodos , Substâncias Luminescentes/farmacologia , Neoplasias da Próstata/diagnóstico , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Glipicanas/imunologia , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Ligantes , Luminescência , Substâncias Luminescentes/síntese química , Masculino
12.
Mol Cell Proteomics ; 15(9): 3003-16, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27412689

RESUMO

Ovarian cancer is a fatal gynaecological malignancy in adult women with a five-year overall survival rate of only 30%. Glycomic and glycoproteomic profiling studies have reported extensive protein glycosylation pattern alterations in ovarian cancer. Therefore, spatio-temporal investigation of these glycosylation changes may unearth tissue-specific changes that occur in the development and progression of ovarian cancer. A novel method for investigating tissue-specific N-linked glycans is using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) on formalin-fixed paraffin-embedded (FFPE) tissue sections that can spatially profile N-glycan compositions released from proteins in tissue-specific regions. In this study, tissue regions of interest (e.g. tumor, stroma, adipose tissue and necrotic areas) were isolated from FFPE tissue sections of advanced serous ovarian cancers (n = 3). PGC-LC-ESI-MS/MS and MALDI-MSI were used as complementary techniques to firstly generate structural information on the tissue-specific glycans in order to then obtain high resolution images of the glycan structure distribution in ovarian cancer tissue. The N-linked glycan repertoires carried by the proteins in these tissue regions were structurally characterized for the first time in FFPE ovarian cancer tissue regions, using enzymatic peptide-N-glycosidase F (PNGase F) release of N-glycans. The released glycans were analyzed by porous graphitized carbon liquid chromatography (PGC-LC) and collision induced electrospray negative mode MS fragmentation analysis. The N-glycan profiles identified by this analysis were then used to determine the location and distribution of each N-glycan on FFPE ovarian cancer sections that were treated with PNGase F using high resolution MALDI-MSI. A tissue-specific distribution of N-glycan structures identified particular regions of the ovarian cancer sections. For example, high mannose glycans were predominantly expressed in the tumor tissue region whereas complex/hybrid N-glycans were significantly abundant in the intervening stroma. Therefore, tumor and non-tumor tissue regions were clearly demarcated solely on their N-glycan structure distributions.


Assuntos
Neoplasias Ovarianas/metabolismo , Polissacarídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Feminino , Glicômica/métodos , Humanos , Especificidade de Órgãos , Inclusão em Parafina , Polissacarídeos/química , Proteômica/métodos , Fixação de Tecidos
13.
Proteomics ; 16(11-12): 1736-41, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26992165

RESUMO

Magnetic resonance imaging (MRI) is a non-invasive technique routinely used to investigate pathological changes in knee osteoarthritis (OA) patients. MRI uniquely reveals zones of the most severe change in the subchondral bone (SCB) in OA, called bone marrow lesions (BMLs). BMLs have diagnostic and prognostic significance in OA, but MRI does not provide a molecular understanding of BMLs. Multiple N-glycan structures have been observed to play a pivotal role in the OA disease process. We applied matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) of N-glycans to formalin-fixed paraffin-embedded (FFPE) SCB tissue sections from patients with knee OA, and liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was conducted on consecutive sections to structurally characterize and correlate with the N-glycans seen by MALDI-MSI. The application of this novel MALDI-MSI protocol has enabled the first steps to spatially investigate the N-glycome in the SCB of knee OA patients.


Assuntos
Cartilagem/diagnóstico por imagem , Osteoartrite do Joelho/diagnóstico por imagem , Polissacarídeos/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Idoso , Medula Óssea/patologia , Cartilagem/química , Cartilagem/patologia , Cromatografia Líquida/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Imagem Molecular/métodos , Osteoartrite do Joelho/diagnóstico , Osteoartrite do Joelho/patologia , Polissacarídeos/química , Tíbia/diagnóstico por imagem , Tíbia/patologia
14.
Talanta ; 143: 294-301, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26078162

RESUMO

We report a novel, selective and sensitive strategy for the sequentially "ON-OFF-ON" fluorescent detection of Cu(2+) and S(2-) based on a fluorescein derivative, FL. The specific binding of FL towards Cu(2+) in aqueous and biological media led to the intensive green fluorescence quenching and a notable increase of the absorbance maximum at 480 nm. In the presence of S(2-), the intensity and overall pattern of the fluorescence emission and UV-vis spectra of FL-Cu(2+) ensemble were recovered since the abolishment of paramagnetic Cu(2+). This displacement approach exhibited highly specificity, and sensitivity with detection limits of 3 nM for Cu(2+) and 150 nM for S(2-). The fluorescence "ON-OFF-ON" circle can be repeated to a minimum of 5 times by the alternative addition of Cu(2+) and S(2-), implying that FL is a renewable dual-functional chemosensor. The biocompatibility of FL toward breast carcinoma cells, MDA-MB-231 was confirmed by MTT assay. The reversible "ON-OFF-ON" fluorescent response of FL to Cu(2+) and S(2-) in living system was further confirmed by confocal fluorescence imaging of living cells. The quantification of Cu(2+) and S(2-) in single intact cell was realized by the flow cytometry analysis.


Assuntos
Cobre/análise , Fluoresceína/química , Corantes Fluorescentes/química , Sulfetos/análise , Tioridazina/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Fluoresceína/farmacologia , Fluorescência , Corantes Fluorescentes/farmacologia , Humanos , Espectrometria de Fluorescência , Sulfetos/química , Tioridazina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA