Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pancreatology ; 22(4): 449-456, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35331647

RESUMO

BACKGROUND: Previous genome-wide association studies (GWAS) identified genome-wide significant risk loci in chronic pancreatitis and investigated underlying disease causing mechanisms by simple overlaps with expression quantitative trait loci (eQTLs), a procedure which may often result in false positive conclusions. METHODS: We conducted a GWAS in 584 non-alcoholic chronic pancreatitis (NACP) patients and 6040 healthy controls. Next, we applied Bayesian colocalization analysis of identified genome-wide significant risk loci from both, our recently published alcoholic chronic pancreatitis (ACP) and the novel NACP dataset, with pancreas eQTLs from the GTEx V8 European cohort to prioritize candidate causal genes and extracted credible sets of shared causal variants. RESULTS: Variants at the CTRC (p = 1.22 × 10-21) and SPINK1 (p = 6.59 × 10-47) risk loci reached genome-wide significance in NACP. CTRC risk variants colocalized with CTRC eQTLs in ACP (PP4 = 0.99, PP4/PP3 = 95.51) and NACP (PP4 = 0.99, PP4/PP3 = 95.46). For both diseases, the 95% credible set of shared causal variants consisted of rs497078 and rs545634. CLDN2-MORC4 risk variants colocalized with CLDN2 eQTLs in ACP (PP4 = 0.98, PP4/PP3 = 42.20) and NACP (PP4 = 0.67, PP4/PP3 = 7.18), probably driven by the shared causal variant rs12688220. CONCLUSIONS: A shared causal CTRC risk variant might unfold its pathogenic effect in ACP and NACP by reducing CTRC expression, while the CLDN2-MORC4 shared causal variant rs12688220 may modify ACP and NACP risk by increasing CLDN2 expression.


Assuntos
Estudo de Associação Genômica Ampla , Pancreatite Alcoólica , Teorema de Bayes , Predisposição Genética para Doença , Humanos , Proteínas Nucleares , Pâncreas , Pancreatite Alcoólica/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Inibidor da Tripsina Pancreática de Kazal/genética
2.
Pancreas ; 51(9): 1231-1234, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37078950

RESUMO

OBJECTIVES: Human and animal studies suggest an important role of autophagy in the pathogenesis of pancreatitis. ATG16L1 (autophagy-related 16 like 1) is part of a protein complex that is involved in the formation of autophagosomes. The c.898A > G (p.T300A) variant of ATG16L1 is associated with Crohn disease. In this study, we analyzed ATG16L1 c.898A > G (p.T300A) for an association with pancreatitis. METHODS: We genotyped 777 patients and 551 control subjects of German origin by melting curve analysis using fluorescence resonance energy transfer probes. The patient group included 429 patients with nonalcoholic chronic pancreatitis (CP), 141 patients with alcoholic CP, and 207 patients with acute pancreatitis (AP). We classified AP by severity according to the Atlanta symposium 1992. RESULTS: Allele and genotype frequencies of ATG16L1 c.898A > G (p.T300A) did not differ significantly between patients and controls (G allele frequencies: nonalcoholic CP, 49.9%; alcoholic CP, 48.2%; AP, 49.5%; controls, 52.7%). We found no significant association with the severity of AP either. CONCLUSIONS: Our data do not support a role of ATG16L1 c.898A > G (p.T300A) in the pathogenesis of AP or CP or an influence on the severity of AP.


Assuntos
Doença de Crohn , Pancreatite , Animais , Humanos , Doença Aguda , Proteínas Relacionadas à Autofagia/genética , Pancreatite/genética , Frequência do Gene , Predisposição Genética para Doença , Autofagia/genética , Polimorfismo de Nucleotídeo Único
3.
Pancreatology ; 21(8): 1434-1442, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34538581

RESUMO

PURPOSE: Loss of function variants of the transient receptor potential cation channel, subfamily V, member 6 (TRPV6) have been recently associated with chronic pancreatitis (CP) in Japanese, German and French patients. Here, we investigated the association of TRPV6 variants with CP in independent European cohorts of early-onset CP patients from Poland and Germany. PATIENTS AND METHODS: We enrolled 152 pediatric CP patients (median age 8.6 yrs) with no history of alcohol/smoking abuse and 472 controls from Poland as well as 157 nonalcoholic young CP patients (median age 20 yrs) and 750 controls from Germany. Coding regions of TRPV6 were screened by Sanger and next generation sequencing. Selected, potentially pathogenic TRPV6 variants were expressed in HEK293T cells and TRPV6 activity was analyzed using ratiometric Ca2+ measurements. RESULTS: Overall, we identified 10 novel (3 nonsense and 7 missenses) TRPV6 variants in CP patients. TRPV6 p.V239SfsX53 nonsense variant and the variants showing significant decrease in intracellular Ca2+ concentration in HEK293T cells (p.R174X, p.L576R, p.R342Q), were significantly overrepresented in Polish patients as compared to controls (6/152, 3.9% vs. 0/358, 0%; P = 0,0007). Nonsense TRPV6 variants predicted as loss of function (p.V239SfsX53 and p.R624X) were also significantly overrepresented in German patients (3/157; 2.0% vs 0/750; 0%, P = 0.005). CONCLUSIONS: We showed that TRPV6 loss of function variants are associated with elevated CP risk in early-onset Polish and German patients confirming that TRPV6 is a novel CP susceptibility gene.


Assuntos
Pancreatite Crônica , Adulto , Canais de Cálcio/genética , Criança , Alemanha/epidemiologia , Células HEK293 , Humanos , Pancreatite Crônica/genética , Polônia/epidemiologia , Canais de Cátion TRPV/genética , Adulto Jovem
4.
Front Bioeng Biotechnol ; 8: 577656, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015026

RESUMO

Intestinal transport and sensing processes and their interconnection to metabolism are relevant to pathologies such as malabsorption syndromes, inflammatory diseases, obesity and type 2 diabetes. Constituting a highly selective barrier, intestinal epithelial cells absorb, metabolize, and release nutrients into the circulation, hence serving as gatekeeper of nutrient availability and metabolic health for the whole organism. Next to nutrient transport and sensing functions, intestinal transporters including peptide transporter 1 (PEPT1) are involved in the absorption of drugs and prodrugs, including certain inhibitors of angiotensin-converting enzyme, protease inhibitors, antivirals, and peptidomimetics like ß-lactam antibiotics. Here, we verify the applicability of 3D organoids for in vitro investigation of intestinal biochemical processes related to transport and metabolism of nutrients and drugs. Establishing a variety of methodologies including illustration of transporter-mediated nutrient and drug uptake and metabolomics approaches, we highlight intestinal organoids as robust and reliable tool in this field of research. Currently used in vitro models to study intestinal nutrient absorption, drug transport and enterocyte metabolism, such as Caco-2 cells or rodent explant models are of limited value due to their cancer and non-human origin, respectively. Particularly species differences result in poorly correlative data and findings obtained in these models cannot be extrapolated reliably to humans, as indicated by high failure rates in drug development pipelines. In contrast, human intestinal organoids represent a superior model of the intestinal epithelium and might help to implement the 3Rs (Reduction, Refinement and Replacement) principle in basic science as well as the preclinical and regulatory setup.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA