Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurology ; 101(7): e679-e689, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37541839

RESUMO

BACKGROUND AND OBJECTIVES: In multiple sclerosis (MS), accelerated aging of the immune system (immunosenescence) may be associated with disease onset or drive progression. DNA methylation (DNAm) is an epigenetic factor that varies among lymphocyte subtypes, and cell-specific DNAm is associated with MS. DNAm varies across the life span and can be used to accurately estimate biological age acceleration, which has been linked to a range of morbidities. The objective of this study was to test for cell-specific epigenetic age acceleration (EAA) in people with MS. METHODS: This was a case-control study of EAA using existing DNAm data from several independent previously published studies. Data were included if .idat files from Illumina 450K or EPIC arrays were available for both a case with MS and an age-matched and sex-matched control, from the same study. Multifactor statistical modeling was performed to assess the primary outcome of EAA. We explored the relationship of EAA and MS, including interaction terms to identify immune cell-specific effects. Cell-sorted DNA methylation data from 3 independent datasets were used to validate findings. RESULTS: We used whole blood DNA methylation data from 583 cases with MS and 643 non-MS controls to calculate EAA using the GrimAge algorithm. The MS group exhibited an increased EAA compared with controls (approximately 9 mths, 95% CI 3.6-14.4), p = 0.001). Statistical deconvolution showed that EAA is associated with MS in a B cell-dependent manner (ß int = 1.7, 95% CI 0.3-2.8), p = 0.002), irrespective of B-cell proportions. Validation analysis using 3 independent datasets enriched for B cells showed an EAA increase of 5.1 years in cases with MS compared with that in controls (95% CI 2.8-7.4, p = 5.5 × 10-5). By comparison, there was no EAA difference in MS in a T cell-enriched dataset. We found that EAA was attributed to the DNAm surrogates for Beta-2-microglobulin (difference = 47,546, 95% CI 10,067-85,026; p = 7.2 × 10-5), and smoking pack-years (difference = 8.1, 95% CI 1.9-14.2, p = 0.002). DISCUSSION: This study provides compelling evidence that B cells exhibit marked EAA in MS and supports the hypothesis that premature B-cell immune senescence plays a role in MS. Future MS studies should focus on age-related molecular mechanisms in B cells.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/genética , Estudos de Casos e Controles , Envelhecimento/genética , Epigênese Genética , Metilação de DNA
2.
Biomolecules ; 12(6)2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35740904

RESUMO

Macrophages are key inflammatory immune cells that display dynamic phenotypes and functions in response to their local microenvironment. In different conditions, macrophage polarization can be induced by high-mobility group box 1 (HMGB1), a nuclear DNA-binding protein that activates innate immunity via the Toll-like receptor (TLR) 4, the receptor for advanced glycation end products (RAGE), and C-X-C chemokine receptor (CXCR) 4. This study investigated the phenotypes of murine bone-marrow-derived macrophages (BMDMs) stimulated with different HMGB1 redox isoforms using bulk RNA sequencing (RNA-Seq). Disulfide HMGB1 (dsHMGB1)-stimulated BMDMs showed a similar but distinct transcriptomic profile to LPS/IFNγ- and LPS-stimulated BMDMs. Fully reduced HMGB1 (frHMGB1) did not induce any significant transcriptomic change. Interestingly, compared to LPS/IFNγ- and LPS-, dsHMGB1-stimulated BMDMs showed lipid metabolism and foam cell differentiation gene set enrichment, and oil red O staining revealed that both dsHMGB1 and frHMGB1 alleviated oxidized low-density lipoprotein (oxLDL)-induced foam cells formation. Overall, this work, for the first time, used transcriptomic analysis by RNA-Seq to investigate the impact of HMGB1 stimulation on BMDM polarization. Our results demonstrated that dsHMGB1 and frHMGB1 induced distinct BMDM polarization phenotypes compared to LPS/IFNγ- and LPS- induced phenotypes.


Assuntos
Proteína HMGB1 , Ativação de Macrófagos , Transcriptoma , Animais , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos
3.
Front Genet ; 12: 620453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747045

RESUMO

Technologies for profiling samples using different omics platforms have been at the forefront since the human genome project. Large-scale multi-omics data hold the promise of deciphering different regulatory layers. Yet, while there is a myriad of bioinformatics tools, each multi-omics analysis appears to start from scratch with an arbitrary decision over which tools to use and how to combine them. Therefore, it is an unmet need to conceptualize how to integrate such data and implement and validate pipelines in different cases. We have designed a conceptual framework (STATegra), aiming it to be as generic as possible for multi-omics analysis, combining available multi-omic anlaysis tools (machine learning component analysis, non-parametric data combination, and a multi-omics exploratory analysis) in a step-wise manner. While in several studies, we have previously combined those integrative tools, here, we provide a systematic description of the STATegra framework and its validation using two The Cancer Genome Atlas (TCGA) case studies. For both, the Glioblastoma and the Skin Cutaneous Melanoma (SKCM) cases, we demonstrate an enhanced capacity of the framework (and beyond the individual tools) to identify features and pathways compared to single-omics analysis. Such an integrative multi-omics analysis framework for identifying features and components facilitates the discovery of new biology. Finally, we provide several options for applying the STATegra framework when parametric assumptions are fulfilled and for the case when not all the samples are profiled for all omics. The STATegra framework is built using several tools, which are being integrated step-by-step as OpenSource in the STATegRa Bioconductor package.

4.
EBioMedicine ; 43: 411-423, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31053557

RESUMO

BACKGROUND: Multiple Sclerosis (MS) is a chronic inflammatory disease and a leading cause of progressive neurological disability among young adults. DNA methylation, which intersects genes and environment to control cellular functions on a molecular level, may provide insights into MS pathogenesis. METHODS: We measured DNA methylation in CD4+ T cells (n = 31), CD8+ T cells (n = 28), CD14+ monocytes (n = 35) and CD19+ B cells (n = 27) from relapsing-remitting (RRMS), secondary progressive (SPMS) patients and healthy controls (HC) using Infinium HumanMethylation450 arrays. Monocyte (n = 25) and whole blood (n = 275) cohorts were used for validations. FINDINGS: B cells from MS patients displayed most significant differentially methylated positions (DMPs), followed by monocytes, while only few DMPs were detected in T cells. We implemented a non-parametric combination framework (omicsNPC) to increase discovery power by combining evidence from all four cell types. Identified shared DMPs co-localized at MS risk loci and clustered into distinct groups. Functional exploration of changes discriminating RRMS and SPMS from HC implicated lymphocyte signaling, T cell activation and migration. SPMS-specific changes, on the other hand, implicated myeloid cell functions and metabolism. Interestingly, neuronal and neurodegenerative genes and pathways were also specifically enriched in the SPMS cluster. INTERPRETATION: We utilized a statistical framework (omicsNPC) that combines multiple layers of evidence to identify DNA methylation changes that provide new insights into MS pathogenesis in general, and disease progression, in particular. FUND: This work was supported by the Swedish Research Council, Stockholm County Council, AstraZeneca, European Research Council, Karolinska Institutet and Margaretha af Ugglas Foundation.


Assuntos
Metilação de DNA , Imunidade , Esclerose Múltipla/etiologia , Esclerose Múltipla/metabolismo , Transdução de Sinais , Adulto , Idoso , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Biomarcadores , Ilhas de CpG , Progressão da Doença , Suscetibilidade a Doenças , Feminino , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Esclerose Múltipla Crônica Progressiva/diagnóstico , Esclerose Múltipla Crônica Progressiva/etiologia , Esclerose Múltipla Crônica Progressiva/metabolismo , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Esclerose Múltipla Recidivante-Remitente/etiologia , Esclerose Múltipla Recidivante-Remitente/metabolismo , Locos de Características Quantitativas , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
5.
Nat Commun ; 9(1): 4845, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451869

RESUMO

Circulating monocytes can compete for virtually any tissue macrophage niche and become long-lived replacements that are phenotypically indistinguishable from their embryonic counterparts. As the factors regulating this process are incompletely understood, we studied niche competition in the brain by depleting microglia with >95% efficiency using Cx3cr1CreER/+R26DTA/+ mice and monitored long-term repopulation. Here we show that the microglial niche is repopulated within weeks by a combination of local proliferation of CX3CR1+F4/80lowClec12a- microglia and infiltration of CX3CR1+F4/80hiClec12a+ macrophages that arise directly from Ly6Chi monocytes. This colonization is independent of blood brain barrier breakdown, paralleled by vascular activation, and regulated by type I interferon. Ly6Chi monocytes upregulate microglia gene expression and adopt microglia DNA methylation signatures, but retain a distinct gene signature from proliferating microglia, displaying altered surface marker expression, phagocytic capacity and cytokine production. Our results demonstrate that monocytes are imprinted by the CNS microenvironment but remain transcriptionally, epigenetically and functionally distinct.


Assuntos
Encéfalo/imunologia , Linhagem da Célula/imunologia , Regulação da Expressão Gênica/imunologia , Microglia/imunologia , Monócitos/imunologia , Transferência Adotiva , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/imunologia , Antígenos Ly/genética , Antígenos Ly/imunologia , Proteínas de Bactérias/imunologia , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Encéfalo/citologia , Encéfalo/efeitos da radiação , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/imunologia , Linhagem da Célula/efeitos da radiação , Proliferação de Células , Metilação de DNA , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Proteínas Luminescentes/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/efeitos da radiação , Camundongos , Camundongos Transgênicos , Microglia/citologia , Microglia/efeitos da radiação , Monócitos/citologia , Monócitos/efeitos da radiação , Monócitos/transplante , Fagocitose , Receptores Mitogênicos/genética , Receptores Mitogênicos/imunologia , Transdução de Sinais , Quimeras de Transplante , Irradiação Corporal Total
6.
Nat Immunol ; 19(5): 1-7, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29662171

RESUMO

The cytokine transforming growth factor-ß (TGF-ß) regulates the development and homeostasis of several tissue-resident macrophage populations, including microglia. TGF-ß is not critical for microglia survival but is required for the maintenance of the microglia-specific homeostatic gene signature1,2. Under defined host conditions, circulating monocytes can compete for the microglial niche and give rise to long-lived monocyte-derived macrophages residing in the central nervous system (CNS)3-5. Whether monocytes require TGF-ß for colonization of the microglial niche and maintenance of CNS integrity is unknown. We found that abrogation of TGF-ß signaling in CX3CR1+ monocyte-derived macrophages led to rapid onset of a progressive and fatal demyelinating motor disease characterized by myelin-laden giant macrophages throughout the spinal cord. Tgfbr2-deficient macrophages were characterized by high expression of genes encoding proteins involved in antigen presentation, inflammation and phagocytosis. TGF-ß is thus crucial for the functional integration of monocytes into the CNS microenvironment.


Assuntos
Encéfalo/imunologia , Doenças Desmielinizantes/imunologia , Macrófagos/patologia , Medula Espinal/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Transdução de Sinais , Medula Espinal/metabolismo , Medula Espinal/patologia , Fator de Crescimento Transformador beta/metabolismo
7.
Mult Scler ; 24(10): 1288-1300, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28766461

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system caused by genetic and environmental factors. DNA methylation, an epigenetic mechanism that controls genome activity, may provide a link between genetic and environmental risk factors. OBJECTIVE: We sought to identify DNA methylation changes in CD4+ T cells in patients with relapsing-remitting (RR-MS) and secondary-progressive (SP-MS) disease and healthy controls (HC). METHODS: We performed DNA methylation analysis in CD4+ T cells from RR-MS, SP-MS, and HC and associated identified changes with the nearby risk allele, smoking, age, and gene expression. RESULTS: We observed significant methylation differences in the VMP1/MIR21 locus, with RR-MS displaying higher methylation compared to SP-MS and HC. VMP1/MIR21 methylation did not correlate with a known MS risk variant in VMP1 or smoking but displayed a significant negative correlation with age and the levels of mature miR-21 in CD4+ T cells. Accordingly, RR-MS displayed lower levels of miR-21 compared to SP-MS, which might reflect differences in age between the groups, and healthy individuals and a significant enrichment of up-regulated miR-21 target genes. CONCLUSION: Disease-related changes in epigenetic marking of MIR21 in RR-MS lead to differences in miR-21 expression with a consequence on miR-21 target genes.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Regulação da Expressão Gênica/fisiologia , MicroRNAs/genética , Esclerose Múltipla Crônica Progressiva/genética , Esclerose Múltipla Recidivante-Remitente/genética , Adulto , Metilação de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Regulação para Cima
8.
Physiol Genomics ; 49(9): 447-461, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28754822

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system. MS likely results from a complex interplay between predisposing causal gene variants (the strongest influence coming from HLA class II locus) and environmental risk factors such as smoking, infectious mononucleosis, and lack of sun exposure/vitamin D. However, little is known about the mechanisms underlying MS development and progression. Moreover, the clinical heterogeneity and variable response to treatment represent additional challenges to a comprehensive understanding and efficient treatment of disease. Epigenetic processes, such as DNA methylation and histone posttranslational modifications, integrate influences from the genes and the environment to regulate gene expression accordingly. Studying epigenetic modifications, which are stable and reversible, may provide an alternative approach to better understand and manage disease. We here aim to review findings from epigenetic studies in MS and further discuss the challenges and clinical opportunities arising from epigenetic research, many of which apply to other diseases with similar complex etiology. A growing body of evidence supports a role of epigenetic processes in the mechanisms underlying immune pathogenesis and nervous system dysfunction in MS. However, disparities between studies shed light on the need to consider possible confounders and methodological limitations for a better interpretation of the data. Nevertheless, translational use of epigenetics might offer new opportunities in epigenetic-based diagnostics and therapeutic tools for a personalized care of MS patients.


Assuntos
Pesquisa Biomédica , Epigênese Genética , Esclerose Múltipla/genética , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Humanos
9.
Pharmacogenet Genomics ; 25(6): 279-88, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25815774

RESUMO

BACKGROUND AND AIM: Pharmacogenetic studies continue to search for pretreatment predictors of chemotherapeutic efficacy and toxicity in metastatic colorectal cancer. Both genome-wide association studies and candidate gene studies have yielded potential genetic markers for chemosensitivity. We conducted a clinical association study, validating the effect of specific genetic markers cited in recently published papers on the efficacy of the oral 5-fluoro-uracil prodrug capecitabine. PATIENTS AND METHODS: Germline DNA was collected for 268 metastatic colorectal cancer patients from the CAIRO trial, a multicenter phase III trial, randomizing between combined or sequential first-line treatment with capecitabine, irinotecan, and oxaliplatin. Genotyping was performed for eight single-nucleotide polymorphisms (SNPs), using high-resolution melting curves. Four SNPs are located in the MTRR gene, and another four SNPs showed significant association with 5-fluoro-uracil cytotoxicity in a recent in-vitro genome-wide association study. The primary endpoint was progression-free survival (PFS); secondary endpoints were objective response and overall survival. RESULTS: In patients receiving capecitabine monotherapy, rs4702484, located in ADCY2 and close to MTRR, was associated with slightly reduced PFS for homozygous wild-type patients (CC 6.2 vs. CT 8.0 months; P=0.018). For the other selected genetic markers, we found no association with PFS, overall survival, or radiologic response upon treatment with capecitabine, either in the total study population or in the capecitabine monotherapy subgroup. CONCLUSION: With the exception of rs4702484, we found no evidence of an effect on capecitabine chemosensitivity for any of the studied SNPs. More specifically, variants in methionine synthase reductase (MTRR) are not likely associated with capecitabine efficacy.


Assuntos
Adenilil Ciclases/genética , Biomarcadores Tumorais/genética , Capecitabina/administração & dosagem , Neoplasias Colorretais/genética , Ferredoxina-NADP Redutase/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Ensaios Clínicos Fase III como Assunto , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Intervalo Livre de Doença , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Farmacogenética , Ensaios Clínicos Controlados Aleatórios como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA