Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 476(2): 663-673, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33074445

RESUMO

Epigenetic memory plays crucial roles in gene regulation. It not only modulates the expression of specific genes but also has ripple effects on transcription as well as translation of other genes. Very often an alteration in expression occurs either via methylation or demethylation. In this context, "1-carbon metabolism" assumes a special significance since its dysregulation by higher levels of homocysteine; Hcy (known as hyperhomocysteinemia; HHcy), a byproduct of "1-Carbon Metabolism" during methionine biosynthesis leads to serious implications in cardiovascular, renal, cerebrovascular systems, and a host of other conditions. Currently, the circular RNAs (circRNAs) generated via non-canonical back-splicing events from the pre-mRNA molecules are at the center stage for their essential roles in diseases via their epigenetic manifestations. We recently identified a circular RNA transcript (circGRM4) that is significantly upregulated in the eye of cystathionine ß-synthase-deficient mice. We also discovered a concurrent over-expression of the mGLUR4 receptor in the eyes of these mice. In brief, circGRM4 is selectively transcribed from its parental mGLUR4 receptor gene (GRM4) functions as a "molecular-sponge" for the miRNAs and results into excessive turnover of the mGLUR4 receptor in the eye in response to extremely high circulating glutamate concentration. We opine that this epigenetic manifestation potentially predisposes HHcy people to retinovascular malfunctioning.


Assuntos
Cistationina beta-Sintase/genética , Olho/irrigação sanguínea , Olho/metabolismo , Ácido Glutâmico/metabolismo , MicroRNAs/metabolismo , RNA Circular/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Cistationina beta-Sintase/metabolismo , Células Endoteliais/metabolismo , Epigênese Genética , Oftalmopatias/induzido quimicamente , Oftalmopatias/genética , Oftalmopatias/metabolismo , Oftalmopatias/patologia , Homocisteína/metabolismo , Humanos , Hiper-Homocisteinemia/genética , MicroRNAs/genética , RNA Circular/genética , Receptores de Glutamato Metabotrópico/genética , Doenças Vasculares/induzido quimicamente , Doenças Vasculares/genética , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia
2.
Can J Physiol Pharmacol ; 99(1): 56-63, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32799662

RESUMO

Epigenetic DNA methylation (1-carbon metabolism) is crucial for gene imprinting/off-printing that ensures epigenetic memory but also generates a copious amount of homocysteine (Hcy), unequivocally. That is why during pregnancy, expectant mothers are recommended "folic acid" preemptively to avoid birth defects in the young ones because of elevated Hcy levels (i.e., hyperhomocysteinemia (HHcy)). As we know, children born with HHcy have several musculoskeletal abnormalities, including growth retardation. Here, we focus on the gut-dysbiotic microbiome implication(s) that we believe instigates the "1-carbon metabolism" and HHcy causing growth retardation along with skeletal muscle abnormalities. We test our hypothesis whether high-methionine diet (HMD) (an amino acid that is high in red meat), a substrate for Hcy, can cause skeletal muscle and growth retardation, and treatment with probiotics (PB) to mitigate skeletal muscle dysfunction. To test this, we employed cystathionine ß-synthase, CBS deficient mouse (CBS+/-) fed with/without HMD and with/without a probiotic (Lactobacillus rhamnosus) in drinking water for 16 weeks. Matrix metalloproteinase (MMP) activity, a hallmark of remodeling, was measured by zymography. Muscle functions were scored via electric stimulation. Our results suggest that compared to the wild-type, CBS+/- mice exhibited reduced growth phenotype. MMP-2 activity was robust in CBS+/- and HMD effects were successfully attenuated by PB intervention. Electrical stimulation magnitude was decreased in CBS+/- and CBS+/- treated with HMD. Interestingly; PB mitigated skeletal muscle growth retardation and atrophy. Collectively, results imply that individuals with mild/moderate HHcy seem more prone to skeletal muscle injury and its dysfunction.


Assuntos
Disbiose/complicações , Transtornos do Crescimento/prevenção & controle , Hiper-Homocisteinemia/complicações , Músculo Esquelético/patologia , Probióticos/administração & dosagem , Animais , Cistationina beta-Sintase/deficiência , Cistationina beta-Sintase/genética , Metilação de DNA , Modelos Animais de Doenças , Disbiose/metabolismo , Disbiose/microbiologia , Disbiose/terapia , Epigênese Genética , Feminino , Microbioma Gastrointestinal/fisiologia , Transtornos do Crescimento/sangue , Transtornos do Crescimento/metabolismo , Transtornos do Crescimento/patologia , Homocisteína/sangue , Homocisteína/metabolismo , Humanos , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/metabolismo , Lacticaseibacillus rhamnosus , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metionina/administração & dosagem , Metionina/metabolismo , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo
3.
Can J Physiol Pharmacol ; 98(2): 51-60, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31369712

RESUMO

Homocysteine (Hcy), a sulfur-containing nonproteinogenic amino acid, is generated as a metabolic intermediate. Hcy constitutes an important part of the "1-carbon metabolism" during methionine turnover. Elevated levels of Hcy known as hyperhomocysteinemia (HHcy) results from vitamin B deficiency, lack of exercise, smoking, excessive alcohol intake, high-fat and methionine-rich diet, and the underlying genetic defects. These factors directly affect the "1-carbon metabolism (methionine-Hcy-folate)" of a given cell. In fact, the Hcy levels are determined primarily by dietary intake, vitamin status, and the genetic blueprint of the susceptible individual. Although Hcy performs an important role in cellular functions, genetic alterations in any of the key enzymes responsible for the "1-carbon metabolism" could potentially upset the metabolic cycle, thus causing HHcy environment in susceptible people. As such, HHcy relates to several clinical conditions like atherosclerosis, myocardial infarction, stroke, cognitive impairment, dementia, Parkinson's disease, multiple sclerosis, epilepsy, and ocular disorders, among others. This article summarizes the findings from our laboratory and public database regarding genetics of HHcy and its effects on ocular disorders, their respective management during dysregulation of the 1-carbon metabolism.


Assuntos
Carbono/metabolismo , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/metabolismo , Retina/patologia , Retina/fisiopatologia , Animais , Humanos , Hiper-Homocisteinemia/patologia , Hiper-Homocisteinemia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA