Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 41(10): 1457-1464, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36747096

RESUMO

DNA comprises molecular information stored in genetic and epigenetic bases, both of which are vital to our understanding of biology. Most DNA sequencing approaches address either genetics or epigenetics and thus capture incomplete information. Methods widely used to detect epigenetic DNA bases fail to capture common C-to-T mutations or distinguish 5-methylcytosine from 5-hydroxymethylcytosine. We present a single base-resolution sequencing methodology that sequences complete genetics and the two most common cytosine modifications in a single workflow. DNA is copied and bases are enzymatically converted. Coupled decoding of bases across the original and copy strand provides a phased digital readout. Methods are demonstrated on human genomic DNA and cell-free DNA from a blood sample of a patient with cancer. The approach is accurate, requires low DNA input and has a simple workflow and analysis pipeline. Simultaneous, phased reading of genetic and epigenetic bases provides a more complete picture of the information stored in genomes and has applications throughout biomedicine.

2.
Cell Death Dis ; 13(11): 953, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371383

RESUMO

Macroautophagy/autophagy is an evolutionarily conserved and tightly regulated catabolic process involved in the maintenance of cellular homeostasis whose dysregulation is implicated in several pathological processes. Autophagy begins with the formation of phagophores that engulf cytoplasmic cargo and mature into double-membrane autophagosomes; the latter fuse with lysosomes/vacuoles for cargo degradation and recycling. Here, we report that yeast Set2, a histone lysine methyltransferase, and its mammalian homolog, SETD2, both act as positive transcriptional regulators of autophagy. However, whereas Set2 regulates the expression of several autophagy-related (Atg) genes upon nitrogen starvation, SETD2 effects in mammals were found to be more restricted. In fact, SETD2 appears to primarily regulate the differential expression of protein isoforms encoded by the ATG14 gene. SETD2 promotes the expression of a long ATG14 isoform, ATG14L, that contains an N-terminal cysteine repeats domain, essential for the efficient fusion of the autophagosome with the lysosome, that is absent in the short ATG14 isoform, ATG14S. Accordingly, SETD2 loss of function decreases autophagic flux, as well as the turnover of aggregation-prone proteins such as mutant HTT (huntingtin) leading to increased cellular toxicity. Hence, our findings bring evidence to the emerging concept that the production of autophagy-related protein isoforms can differentially affect core autophagy machinery bringing an additional level of complexity to the regulation of this biological process in more complex organisms.


Assuntos
Autofagossomos , Macroautofagia , Animais , Autofagossomos/metabolismo , Lisossomos/metabolismo , Autofagia/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Mamíferos
3.
Sci Rep ; 12(1): 16566, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195648

RESUMO

Early detection of cancer will improve survival rates. The blood biomarker 5-hydroxymethylcytosine has been shown to discriminate cancer. In a large covariate-controlled study of over two thousand individual blood samples, we created, tested and explored the properties of a 5-hydroxymethylcytosine-based classifier to detect colorectal cancer (CRC). In an independent validation sample set, the classifier discriminated CRC samples from controls with an area under the receiver operating characteristic curve (AUC) of 90% (95% CI [87, 93]). Sensitivity was 55% at 95% specificity. Performance was similar for early stage 1 (AUC 89%; 95% CI [83, 94]) and late stage 4 CRC (AUC 94%; 95% CI [89, 98]). The classifier could detect CRC even when the proportion of tumor DNA in blood was undetectable by other methods. Expanding the classifier to include information about cell-free DNA fragment size and abundance across the genome led to gains in sensitivity (63% at 95% specificity), with similar overall performance (AUC 91%; 95% CI [89, 94]). We confirm that 5-hydroxymethylcytosine can be used to detect CRC, even in early-stage disease. Therefore, the inclusion of 5-hydroxymethylcytosine in multianalyte testing could improve sensitivity for the detection of early-stage cancer.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Colorretais , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , DNA/genética , Detecção Precoce de Câncer/métodos , Humanos , Sensibilidade e Especificidade
4.
Nat Commun ; 9(1): 2961, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054475

RESUMO

Contact inhibition enables noncancerous cells to cease proliferation and growth when they contact each other. This characteristic is lost when cells undergo malignant transformation, leading to uncontrolled proliferation and solid tumor formation. Here we report that autophagy is compromised in contact-inhibited cells in 2D or 3D-soft extracellular matrix cultures. In such cells, YAP/TAZ fail to co-transcriptionally regulate the expression of myosin-II genes, resulting in the loss of F-actin stress fibers, which impairs autophagosome formation. The decreased proliferation resulting from contact inhibition is partly autophagy-dependent, as is their increased sensitivity to hypoxia and glucose starvation. These findings define how mechanically repressed YAP/TAZ activity impacts autophagy to contribute to core phenotypes resulting from high cell confluence that are lost in various cancers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/fisiologia , Proliferação de Células , Inibição de Contato/fisiologia , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose , Autofagossomos/metabolismo , Proteína de Capeamento de Actina CapZ/metabolismo , Contagem de Células , Linhagem Celular Tumoral , Sobrevivência Celular , Células Epiteliais , Matriz Extracelular/metabolismo , Fibroblastos , Técnicas de Silenciamento de Genes , Glucose , Células HeLa , Humanos , Hipóxia , Camundongos , Miosina Tipo II/genética , Fosfoproteínas/genética , Transdução de Sinais , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
5.
Nature ; 500(7463): 468-71, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23863932

RESUMO

Autophagy is an evolutionarily conserved catabolic process involved in several physiological and pathological processes. Although primarily cytoprotective, autophagy can also contribute to cell death; it is thus important to understand what distinguishes the life or death decision in autophagic cells. Here we report that induction of autophagy is coupled to reduction of histone H4 lysine 16 acetylation (H4K16ac) through downregulation of the histone acetyltransferase hMOF (also called KAT8 or MYST1), and demonstrate that this histone modification regulates the outcome of autophagy. At a genome-wide level, we find that H4K16 deacetylation is associated predominantly with the downregulation of autophagy-related genes. Antagonizing H4K16ac downregulation upon autophagy induction results in the promotion of cell death. Our findings establish that alteration in a specific histone post-translational modification during autophagy affects the transcriptional regulation of autophagy-related genes and initiates a regulatory feedback loop, which serves as a key determinant of survival versus death responses upon autophagy induction.


Assuntos
Autofagia , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Acetilação/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação para Baixo/efeitos dos fármacos , Epistasia Genética/efeitos dos fármacos , Retroalimentação Fisiológica , Humanos , Lisina/química , Lisina/metabolismo , Sirolimo/farmacologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA