Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 393: 122427, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32155523

RESUMO

The monitoring of soil contamination deriving from oil and gas industry remains difficult in vegetated areas. Over the last decade, optical remote sensing has proved helpful for this purpose. By tracking alterations in vegetation biochemistry through its optical properties, multi- and hyperspectral remote sensing allow detecting and quantifying crude oil and petroleum products leaked following accidental leakages or bad cessation practices. Recent advances in this field have led to the development of various methods that can be applied either in the field using portable spectroradiometers or at large scale on airborne and satellite images. Experiments carried out under controlled conditions have largely contributed to identifying the most important factors influencing the detection of oil (plant species, mixture composition, etc.). In a perspective of operational use, an important effort is still required to make optical remote sensing a reliable tool for oil and gas companies. The current methods used on imagery should extend their scope to a wide range of contexts and their application to upcoming satellite-embedded hyperspectral sensors should be considered in future studies.

2.
Ecotoxicol Environ Saf ; 184: 109654, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31522059

RESUMO

The persistence of soil contamination after cessation of oil activities remains a major environmental issue in tropical regions. The assessment of the contamination is particularly difficult on vegetated sites, but promising advances in reflectance spectroscopy have recently emerged for this purpose. This study aimed to exploit vegetation reflectance for estimating low concentrations of Total Petroleum Hydrocarbons (TPH) in soils. A greenhouse experiment was carried out for 42 days on Cenchrus alopecuroides (L.) under realistic tropical conditions. The species was grown on oil-contaminated mud pit soils from industrial sites, with various concentrations of TPH. After 42 days, a significant decrease in plant growth and leaf chlorophyll and carotenoid contents was observed for plants exposed to 5-19 g kg-1 TPH in comparison to the controls (p < 0.05). Conversely, pigment contents were higher for plants exposed to 1 g kg-1 TPH (hormesis phenomenon). These modifications proportionally affected the reflectance of C. alopecuroides at leaf and plant scales, especially in the visible region around 550 and 700 nm. 33 vegetation indices were used for linking the biochemical and spectral responses of the species to oil using elastic net regressions. The established models indicated that chlorophylls a and b and ß-carotene were the main pigments involved in the modifications of reflectance (R2 > 0.7). The same indices also succeeded in estimating the concentrations of TPH using random forest regression, at leaf and plant scales (RMSE = 1.46 and 1.63 g kg-1 and RPD = 5.09 and 4.44, respectively). Four out of the 33 indices contributed the most to the models (>75%). This study opens up encouraging perspectives for monitoring the cessation of oil activities in tropical regions. Further researches will focus on the application of our approach at larger scale, on airborne and satellite imagery.


Assuntos
Poluição por Petróleo/análise , Petróleo/análise , Poaceae/química , Poluentes do Solo/análise , Solo/química , Clorofila/metabolismo , Aprendizado de Máquina , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Microbiologia do Solo , Análise Espectral , Clima Tropical
3.
Sci Total Environ ; 655: 1113-1124, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30577105

RESUMO

The use of hyperspectral spectroscopy for oil detection recently sparked a growing interest for risk assessment over vegetated areas. In a perspective of image applications, we conducted a greenhouse experiment on a brownfield-established species, Rubus fruticosus L. (bramble), to evaluate the potential of vegetation reflectance to detect and discriminate among various oil-contaminated soils. The species was grown for 32 days on four different soils with mixtures of petroleum hydrocarbons and heavy metals. Additional plants were grown on either uncontaminated control or water-deficient soils for comparison. Repeated reflectance measurements indicated modified spectral signatures under both oil and water-deficit exposure, from leaf to multi-plant scales. The amplitude of the response varied with mixture composition, exposure time, acquisition scale and spectrum region. Reflectance changes were linked to alterations in chlorophyll, carotenoid and water contents using vegetation indices. These indices were used to catch spectral similarities among acquisition scales and to discriminate among treatments using Kendall's coefficient of concordance (W) and regularized logistic regression. Of the 33 vegetation indices tested, 14 were concordant from leaf to multi-plant scales (W > 0.75, p < 0.05) and strongly related to leaf biochemistry (R2 > 0.7). The 14 indices allowed discriminating between each mixture and the control treatment with no or minor confusions (≤5%) at all acquisition scales, depending on exposure time. Some of the mixtures remained difficult to discriminate among them and from the water-deficit treatment. The approach was tested at the canopy scale under natural conditions and performed well for identifying bramble exposed to either one of the experimentally-tested mixtures (90% accuracy) or to uncontaminated soil (83% accuracy). This study provided better understanding of vegetation spectral response to oil mixtures and opens up promising perspectives for future applications.


Assuntos
Monitoramento Ambiental/métodos , Poluição por Petróleo/análise , Poluentes do Solo/análise , Solo/química , Secas , Monitoramento Ambiental/instrumentação , França
4.
Environ Sci Technol ; 52(4): 1756-1764, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29376321

RESUMO

The remote assessment of soil contamination remains difficult in vegetated areas. Recent advances in hyperspectral spectroscopy suggest making use of plant reflectance to monitor oil and gas leakage from industrial facilities. However, knowledge about plant response to oil contamination is still limited, so only very few imaging applications are possible at this stage. We therefore conducted a greenhouse experiment on three species long-term exposed to either oil-contaminated or water-deficient soils. Reflectance measurements were regularly performed at leaf and plant scale over 61 days of exposure. Results showed an increase of reflectance in the visible (VIS), the red-edge and the short-wave infrared (SWIR) under both oil and water-deficit stress exposure. A contrasted response in the near-infrared (NIR) was also observed among species. Spectra underwent transformations to discriminate species' responses to the different treatments using linear discriminant analysis (LDA) with a stepwise procedure. Original and transformed spectra enabled to discriminate the plants' responses to the different treatments without confusion after 61 days. The discriminating wavelengths were consistent with the spectral differences observed. These results suggest differential changes in plant pigments, structure and water content as a response to various stressors, and open up promising perspectives for airborne and satellite applications.


Assuntos
Folhas de Planta , Solo , Plantas , Análise Espectral , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA