Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pediatric Infect Dis Soc ; 12(12): 618-626, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-37956414

RESUMO

BACKGROUND: The role of SARS-CoV-2 viral load in predicting contagiousness, disease severity, transmissibility, and clinical decision-making continues to be an area of great interest. However, most studies have been in adults and have evaluated SARS-CoV-2 loads using cycle thresholds (Ct) values, which are not standardized preventing consistent interpretation critical to understanding clinical impact and utility. Here, a quantitative SARS-CoV-2 reverse-transcription digital PCR (RT-dPCR) assay normalized to WHO International Units was applied to children at risk of severe disease diagnosed with COVID-19 at St. Jude Children's Research Hospital between March 28, 2020, and January 31, 2022. METHODS: Demographic and clinical information from children, adolescents, and young adults treated at St. Jude Children's Research Hospital were abstracted from medical records. Respiratory samples underwent SARS-CoV-2 RNA quantitation by RT-dPCR targeting N1 and N2 genes, with sequencing to determine the genetic lineage of infecting virus. RESULTS: Four hundred and sixty-two patients aged 0-24 years (median 11 years old) were included during the study period. Most patients were infected by the omicron variant (43.72%), followed by ancestral strain (22.29%), delta (13.20%), and alpha (2.16%). Viral load at presentation ranged from 2.49 to 9.14 log10 IU/mL, and higher viral RNA loads were associated with symptoms (OR 1.32; CI 95% 1.16-1.49) and respiratory disease (OR 1.23; CI 95% 1.07-1.41). Viral load did not differ by SARS-CoV-2 variant, vaccination status, age, or baseline diagnosis. CONCLUSIONS: SARS-CoV-2 RNA loads predict the presence of symptomatic and respiratory diseases. The use of standardized, quantitative methods is feasible, allows for replication, and comparisons across institutions, and has the potential to facilitate consensus quantitative thresholds for risk stratification and treatment.


Assuntos
COVID-19 , SARS-CoV-2 , Criança , Adulto Jovem , Humanos , Adolescente , SARS-CoV-2/genética , RNA Viral/genética , COVID-19/diagnóstico , Reação em Cadeia da Polimerase , Carga Viral , Teste para COVID-19
2.
J Gen Virol ; 96(Pt 7): 1603-12, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25701826

RESUMO

The reverse zoonotic events that introduced the 2009 pandemic influenza virus into pigs have drastically increased the diversity of swine influenza viruses in Europe. The pandemic potential of these novel reassortments is still unclear, necessitating enhanced surveillance of European pigs with additional focus on risk assessment of these new viruses. In this study, four European swine influenza viruses were assessed for their zoonotic potential. Two of the four viruses were enzootic viruses of subtype H1N2 (with avian-like H1) and H3N2, and two were new reassortants, one with avian-like H1 and human-like N2 and one with 2009 pandemic H1 and swine-like N2. All viruses replicated to high titres in nasal wash and nasal turbinate samples from inoculated ferrets and transmitted efficiently by direct contact. Only the H3N2 virus transmitted to naïve ferrets via the airborne route. Growth kinetics using a differentiated human bronchial epithelial cell line showed that all four viruses were able to replicate to high titres. Further, the viruses revealed preferential binding to the 2,6-α-silalylated glycans and investigation of the antiviral susceptibility of the viruses revealed that all were sensitive to neuraminidase inhibitors. These findings suggested that these viruses have the potential to infect humans and further underline the need for continued surveillance as well as biological characterization of new influenza A viruses.


Assuntos
Vírus da Influenza A Subtipo H1N2/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Vírus Reordenados/isolamento & purificação , Doenças dos Suínos/virologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/virologia , Europa (Continente)/epidemiologia , Furões , Humanos , Vírus da Influenza A Subtipo H1N2/genética , Vírus da Influenza A Subtipo H1N2/fisiologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/fisiologia , Dados de Sequência Molecular , Polissacarídeos/metabolismo , RNA Viral/genética , Vírus Reordenados/genética , Vírus Reordenados/fisiologia , Receptores Virais/metabolismo , Análise de Sequência de DNA , Suínos , Doenças dos Suínos/epidemiologia , Carga Viral , Ligação Viral , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA