Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1870(8): 119558, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37549740

RESUMO

Cytoglobin (Cygb) is an evolutionary ancient heme protein with yet unclear physiological function(s). Mammalian Cygb is ubiquitously expressed in all tissues and is proposed to be involved in reactive oxygen species (ROS) detoxification, nitric oxide (NO) metabolism and lipid-based signaling processes. Loss-of-function studies in mouse associate Cygb with apoptosis, inflammation, fibrosis, cardiovascular dysfunction or oncogenesis. In zebrafish (Danio rerio), two cygb genes exist, cytoglobin 1 (cygb1) and cytoglobin 2 (cygb2). Both have different coordination states and distinct expression sites within zebrafish tissues. The biological roles of the cygb paralogs are largely uncharacterized. We used a CRISPR/Cas9 genome editing approach and generated a knockout of the penta-coordinated cygb1 for in vivo analysis. Adult male cygb1 knockouts develop phenotypic abnormalities, including weight loss. To identify the molecular mechanisms underlying the occurrence of these phenotypes and differentiate between function and effect of the knockout we compared the transcriptomes of cygb1 knockout at different ages to age-matched wild-type zebrafish. We found that immune regulatory and cell cycle regulatory transcripts (e.g. tp53) were up-regulated in the cygb1 knockout liver. Additionally, the expression of transcripts involved in lipid metabolism and transport, the antioxidative defense and iron homeostasis was affected in the cygb1 knockout. Cygb1 may function as an anti-inflammatory and cytoprotective factor in zebrafish liver, and may be involved in lipid-, iron-, and ROS-dependent signaling.


Assuntos
Globinas , Peixe-Zebra , Masculino , Camundongos , Animais , Citoglobina/genética , Citoglobina/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Globinas/genética , Globinas/metabolismo , Metabolismo dos Lipídeos/genética , Espécies Reativas de Oxigênio , Estresse Oxidativo/genética , Homeostase/genética , Lipídeos , Mamíferos/metabolismo
2.
Genome Biol Evol ; 13(7)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33871590

RESUMO

The members of the globin superfamily are a classical model system to investigate gene evolution and their fates as well as the diversity of protein function. One of the best-known globins is myoglobin (Mb), which is mainly expressed in heart muscle and transports oxygen from the sarcolemma to the mitochondria. Most vertebrates harbor a single copy of the myoglobin gene, but some fish species have multiple myoglobin genes. Phylogenetic analyses indicate an independent emergence of multiple myoglobin genes, whereby the origin is mostly the last common ancestor of each order. By analyzing different transcriptome data sets, we found at least 15 multiple myoglobin genes in the polypterid gray bichir (Polypterus senegalus) and reedfish (Erpetoichthys calabaricus). In reedfish, the myoglobin genes are expressed in a broad range of tissues but show very different expression values. In contrast, the Mb genes of the gray bichir show a rather scattered expression pattern; only a few Mb genes were found expressed in the analyzed tissues. Both, gray bichir and reedfish possess lungs which enable them to inhabit shallow and swampy waters throughout tropical Africa with frequently fluctuating and low oxygen concentrations. The myoglobin repertoire probably reflects the molecular adaptation to these conditions. The sequence divergence, the substitution rate, and the different expression pattern of multiple myoglobin genes in gray bichir and reedfish imply different functions, probably through sub- and neofunctionalization during evolution.


Assuntos
Peixes , Mioglobina , Animais , Evolução Molecular , Peixes/genética , Mioglobina/genética , Filogenia , Vertebrados/genética
3.
Neuroscience ; 451: 226-239, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33002555

RESUMO

While the brain of most mammals suffers from irreversible damage after only short periods of low oxygen levels (hypoxia), marine mammals are excellent breath-hold divers that have adapted to hypoxia. In addition to physiological adaptations, such as large oxygen storing capacity and strict oxygen economy during diving, the neurons of the deep-diving hooded seal (Cystophora cristata) have an intrinsic tolerance to hypoxia. We aim to understand the molecular basis of this neuronal hypoxia tolerance. Previously, transcriptomics of the cortex of the hooded seal have revealed remarkably high expression levels of S100B and clusterin (apolipoprotein J) when compared to the ferret, a non-diving carnivore. Both genes have much-debated roles in hypoxia and oxidative stress. Here, we evaluated the effects of S100B and of two isoforms of clusterin (soluble and nucleus clusterin) on the survival, metabolic activity and the amount of reactive oxygen species (ROS) in HN33 neuronal mouse cells exposed to hypoxia and oxidative stress. S100B and soluble clusterin had neuroprotective effects, with reduced ROS-levels and retention of normoxic energy status of cells during both stress conditions. The protective effects of nucleus clusterin were restricted to hypoxia. S100B and clusterin showed purifying selection in marine and terrestrial mammals, indicating a functional conservation across species. Immunofluorescence revealed identical cellular distributions of S100B and clusterin in mice, ferrets and hooded seals, further supporting the functional conservation. Taken together, our data suggest that the neuroprotective effects of all three proteins are exclusively facilitated by their increased expression in the brain of the hooded seal.


Assuntos
Clusterina , Focas Verdadeiras , Animais , Encéfalo , Técnicas de Cultura de Células , Hipóxia , Camundongos , Subunidade beta da Proteína Ligante de Cálcio S100
4.
PLoS One ; 12(1): e0169366, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28046118

RESUMO

The brain of diving mammals tolerates low oxygen conditions better than the brain of most terrestrial mammals. Previously, it has been demonstrated that the neurons in brain slices of the hooded seal (Cystophora cristata) withstand hypoxia longer than those of mouse, and also tolerate reduced glucose supply and high lactate concentrations. This tolerance appears to be accompanied by a shift in the oxidative energy metabolism to the astrocytes in the seal while in terrestrial mammals the aerobic energy production mainly takes place in neurons. Here, we used RNA-Seq to compare the effect of hypoxia and reoxygenation in vitro on brain slices from the visual cortex of hooded seals. We saw no general reduction of gene expression, suggesting that the response to hypoxia and reoxygenation is an actively regulated process. The treatments caused the preferential upregulation of genes related to inflammation, as found before e.g. in stroke studies using mammalian models. Gene ontology and KEGG pathway analyses showed a downregulation of genes involved in ion transport and other neuronal processes, indicative for a neuronal shutdown in response to a shortage of O2 supply. These differences may be interpreted in terms of an energy saving strategy in the seal's brain. We specifically analyzed the regulation of genes involved in energy metabolism. Hypoxia and reoxygenation caused a similar response, with upregulation of genes involved in glucose metabolism and downregulation of the components of the pyruvate dehydrogenase complex. We also observed upregulation of the monocarboxylate transporter Mct4, suggesting increased lactate efflux. Together, these data indicate that the seal brain responds to the hypoxic challenge by a relative increase in the anaerobic energy metabolism.


Assuntos
Encéfalo/metabolismo , Perfilação da Expressão Gênica/métodos , Hipóxia/genética , Hipóxia/metabolismo , Oxigênio/metabolismo , Focas Verdadeiras/genética , Animais , Metabolismo Energético/genética , Regulação da Expressão Gênica , Ontologia Genética , Complexo Piruvato Desidrogenase/metabolismo , Análise de Sequência de RNA , Córtex Visual/metabolismo
5.
Neuroscience ; 337: 339-354, 2016 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-27542528

RESUMO

Neuroglobin (Ngb) is a respiratory protein that is almost exclusively expressed in the vertebrate nervous system. Despite many years of research, the exact function and even the expression sites of Ngb are still a matter of debate. However, to investigate hypotheses surrounding the potential roles of Ngb, a detailed knowledge of its major and minor expression sites is indispensable. We have therefore evaluated Ngb expression by extensive bioinformatic analysis using publicly available transcriptome data (RNA-Seq). During mammalian brain development, we observed low embryonic expression of Ngb mRNA and an increase after birth, arguing against a role of Ngb in fetal hypoxia tolerance. In adult mouse brain, we found highest Ngb mRNA levels in the hypothalamus, where expression was up to 100-fold stronger than in cerebral cortex, cerebellum or hippocampus, as confirmed by qRT-PCR and Western blotting. High Ngb expression in the hypothalamus was found conserved in humans and other mammals. Thus, Ngb mRNA is expressed at a basal level in many mammalian brain regions, but shows distinctive regional peaks. RNA-Seq analysis further revealed only low levels of Ngb mRNA in retina and testes and no signal in standard tumor cell lines, thus raising questions concerning previous studies and functional hypotheses. In conclusion, this broad-scale expression study may point to distinct Ngb functions for high- and low-expressing cells and tissues and argues against a single, generic role of Ngb as an oxygen supplier or as an endogenous protectant in all nerve cells.


Assuntos
Córtex Cerebral/metabolismo , Globinas/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Cerebelo/metabolismo , Mamíferos , Camundongos , Neuroglobina , RNA Mensageiro/metabolismo
6.
BMC Genomics ; 17: 583, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27507242

RESUMO

BACKGROUND: During long dives, the brain of whales and seals experiences a reduced supply of oxygen (hypoxia). The brain neurons of the hooded seal (Cystophora cristata) are more tolerant towards low-oxygen conditions than those of mice, and also better survive other hypoxia-related stress conditions like a reduction in glucose supply and high concentrations of lactate. Little is known about the molecular mechanisms that support the hypoxia tolerance of the diving brain. RESULTS: Here we employed RNA-seq to approach the molecular basis of the unusual stress tolerance of the seal brain. An Illumina-generated transcriptome of the visual cortex of the hooded seal was compared with that of the ferret (Mustela putorius furo), which served as a terrestrial relative. Gene ontology analyses showed a significant enrichment of transcripts related to translation and aerobic energy production in the ferret but not in the seal brain. Clusterin, an extracellular chaperone, is the most highly expressed gene in the seal brain and fourfold higher than in the ferret or any other mammalian brain transcriptome. The largest difference was found for S100B, a calcium-binding stress protein with pleiotropic function, which was 38-fold enriched in the seal brain. Notably, significant enrichment of S100B mRNA was also found in the transcriptomes of whale brains, but not in the brains of terrestrial mammals. CONCLUSION: Comparative transcriptomics indicates a lower aerobic capacity of the seal brain, which may be interpreted as a general energy saving strategy. Elevated expression of stress-related genes, such as clusterin and S100B, possibly contributes to the remarkable hypoxia tolerance of the brain of the hooded seal. Moreover, high levels of S100B that possibly protect the brain appear to be the result of the convergent adaptation of diving mammals.


Assuntos
Encéfalo/metabolismo , Mergulho , Focas Verdadeiras/genética , Focas Verdadeiras/metabolismo , Animais , Biologia Computacional/métodos , Metabolismo Energético , Perfilação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Mamíferos , Anotação de Sequência Molecular , Transcriptoma , Córtex Visual/metabolismo
7.
J Comp Physiol B ; 186(3): 373-86, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26820264

RESUMO

The brains of some diving mammals can withstand periods of severe hypoxia without signs of deleterious effects. This may in part be due to an enhanced cerebral capacity for anaerobic energy production. Here, we have tested this hypothesis by comparing various parameters of the lactate dehydrogenase (LDH) in the brain of the hooded seal (Cystophora cristata) with those in the brains of the ferret (Mustela putorius furo) and mouse (Mus musculus). We found that mRNA and protein expression of lactate dehydrogenase a (LDHA) and lactate dehydrogenase b (LDHB), and also the LDH activity were significantly higher in the ferret brain than in brains of the hooded seal and the mouse (p < 0.0001). No conspicuous differences in the LDHA and LDHB sequences were observed. There was also no difference in the buffering capacities of the brains. Thus, an enhanced capacity for anaerobic energy production likely does not explain the higher hypoxia tolerance of the seal brain. However, the brain of the hooded seal had higher relative levels of LDHB isoenzymes (LDH1 and LDH2) compared to the non-diving mammals. Moreover, immunofluorescence studies showed more pronounced co-localization of LDHB and glial fibrillary acidic protein in the cortex of the hooded seal. Since LDHB isoenzymes primarily catalyze the conversion of lactate to pyruvate, this finding suggests that the contribution of astrocytes to the brain aerobic metabolism is higher in the hooded seal than in non-diving species. The cerebral tolerance of the hooded seal to hypoxia may therefore partly rely on different LDH isoenzymes distribution.


Assuntos
Adaptação Fisiológica/fisiologia , Encéfalo/enzimologia , Mergulho/fisiologia , L-Lactato Desidrogenase/metabolismo , Focas Verdadeiras/fisiologia , Animais , Western Blotting , Encéfalo/fisiologia , Eletroforese/métodos , Furões/metabolismo , Regulação Enzimológica da Expressão Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Desidrogenase/genética , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA