Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell ; 184(19): 4953-4968.e16, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34492226

RESUMO

Severe coronavirus disease 2019 (COVID-19) is characterized by overproduction of immune mediators, but the role of interferons (IFNs) of the type I (IFN-I) or type III (IFN-III) families remains debated. We scrutinized the production of IFNs along the respiratory tract of COVID-19 patients and found that high levels of IFN-III, and to a lesser extent IFN-I, characterize the upper airways of patients with high viral burden but reduced disease risk or severity. Production of specific IFN-III, but not IFN-I, members denotes patients with a mild pathology and efficiently drives the transcription of genes that protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In contrast, compared to subjects with other infectious or noninfectious lung pathologies, IFNs are overrepresented in the lower airways of patients with severe COVID-19 that exhibit gene pathways associated with increased apoptosis and decreased proliferation. Our data demonstrate a dynamic production of IFNs in SARS-CoV-2-infected patients and show IFNs play opposing roles at distinct anatomical sites.


Assuntos
COVID-19/patologia , Interferons/metabolismo , Sistema Respiratório/virologia , Índice de Gravidade de Doença , Fatores Etários , Envelhecimento/patologia , COVID-19/genética , COVID-19/imunologia , Células Epiteliais/patologia , Células Epiteliais/virologia , Regulação da Expressão Gênica , Humanos , Interferons/genética , Leucócitos/patologia , Leucócitos/virologia , Pulmão/patologia , Pulmão/virologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Carga Viral
2.
J Med Chem ; 64(16): 12261-12272, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34382796

RESUMO

Modern adjuvants for vaccine formulations are immunostimulating agents whose action is based on the activation of pattern recognition receptors (PRRs) by well-defined ligands to boost innate and adaptive immune responses. Monophosphoryl lipid A (MPLA), a detoxified analogue of lipid A, is a clinically approved adjuvant that stimulates toll-like receptor 4 (TLR4). The synthesis of MPLA poses manufacturing and quality assessment challenges. Bridging this gap, we report here the development and preclinical testing of chemically simplified TLR4 agonists that could sustainably be produced in high purity and on a large scale. Underpinned by computational and biological experiments, we show that synthetic monosaccharide-based molecules (FP compounds) bind to the TLR4/MD-2 dimer with submicromolar affinities stabilizing the active receptor conformation. This results in the activation of MyD88- and TRIF-dependent TLR4 signaling and the NLRP3 inflammasome. FP compounds lack in vivo toxicity and exhibit adjuvant activity by stimulating antibody responses with a potency comparable to MPLA.


Assuntos
Adjuvantes Imunológicos/farmacologia , Glucosamina/farmacologia , Glicolipídeos/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/toxicidade , Animais , Feminino , Glucosamina/síntese química , Glucosamina/metabolismo , Glucosamina/toxicidade , Glicolipídeos/síntese química , Glicolipídeos/metabolismo , Glicolipídeos/toxicidade , Humanos , Inflamassomos/metabolismo , Interleucina-1/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
3.
Innate Immun ; 27(3): 275-284, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33858242

RESUMO

TLRs, including TLR4, play a crucial role in inflammatory-based diseases, and TLR4 has been identified as a therapeutic target for pharmacological intervention. In previous studies, we investigated the potential of FP7, a novel synthetic glycolipid active as a TLR4 antagonist, to inhibit haematopoietic and non-haematopoietic MyD88-dependent TLR4 pro-inflammatory signalling. The main aim of this study was to investigate the action of FP7 and its derivative FP12 on MyD88-independent TLR4 signalling in THP-1 derived macrophages. Western blotting, Ab array and ELISA approaches were used to explore the effect of FP7 and FP12 on TRIF-dependent TLR4 functional activity in response to LPS and other endogenous TLR4 ligands in THP-1 macrophages. A different kinetic in the inhibition of endotoxin-driven TBK1, IRF3 and STAT1 phosphorylation was observed using different LPS chemotypes. Following activation of TLR4 by LPS, data revealed that FP7 and FP12 inhibited TBK1, IRF3 and STAT1 phosphorylation which was associated with down-regulation IFN-ß and IP-10. Specific blockage of the IFN type one receptor showed that these novel molecules inhibited TRIF-dependent TLR4 signalling via IFN-ß pathways. These results add novel information on the mechanism of action of monosaccharide FP derivatives. The inhibition of the TRIF-dependent pathway in human macrophages suggests potential therapeutic uses for these novel TLR4 antagonists in pharmacological interventions on inflammatory diseases.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Anti-Inflamatórios/uso terapêutico , Glicolipídeos/uso terapêutico , Inflamação/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Receptor 4 Toll-Like/metabolismo , Anti-Inflamatórios/farmacologia , Quimiocina CXCL10/metabolismo , Descoberta de Drogas , Glicolipídeos/farmacologia , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Fosforilação , Transdução de Sinais , Células THP-1 , Receptor 4 Toll-Like/antagonistas & inibidores
4.
Sci Rep ; 9(1): 919, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696900

RESUMO

New monosaccharide-based lipid A analogues were rationally designed through MD-2 docking studies. A panel of compounds with two carboxylate groups as phosphates bioisosteres, was synthesized with the same glucosamine-bis-succinyl core linked to different unsaturated and saturated fatty acid chains. The binding of the synthetic compounds to purified, functional recombinant human MD-2 was studied by four independent methods. All compounds bound to MD-2 with similar affinities and inhibited in a concentration-dependent manner the LPS-stimulated TLR4 signaling in human and murine cells, while being inactive as TLR4 agonists when provided alone. A compound of the panel was tested in vivo and was not able to inhibit the production of proinflammatory cytokines in animals. This lack of activity is probably due to strong binding to serum albumin, as suggested by cell experiments in the presence of the serum. The interesting self-assembly property in solution of this type of compounds was investigated by computational methods and microscopy, and formation of large vesicles was observed by cryo-TEM microscopy.


Assuntos
Glicolipídeos/química , Antígeno 96 de Linfócito/química , Receptor 4 Toll-Like/química , Animais , Sítios de Ligação , Glicolipídeos/metabolismo , Glicolipídeos/farmacologia , Humanos , Antígeno 96 de Linfócito/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Receptor 4 Toll-Like/antagonistas & inibidores
5.
Cell Death Dis ; 9(3): 280, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449625

RESUMO

Toll-like receptor 4 (TLR4) activation is pivotal to innate immunity and has been shown to regulate proliferation and differentiation of human neural stem cells (hNSCs) in vivo. Here we study the role of TLR4 in regulating hNSC derived from the human telencephalic-diencephalic area of the fetal brain and cultured in vitro as neurospheres in compliance with Good Manifacture Procedures (GMP) guidelines. Similar batches have been used in recent clinical trials in ALS patients. We found that TLR2 and 4 are expressed in hNSCs as well as CD14 and MD-2 co-receptors, and TLR4 expression is downregulated upon differentiation. Activation of TLR4 signaling by lipopolysaccharide (LPS) has a positive effect on proliferation and/or survival while the inverse is observed with TLR4 inhibition by a synthetic antagonist. TLR4 activation promotes neuronal and oligodendrocyte differentiation and/or survival while TLR4 inhibition leads to increased apoptosis. Consistently, endogenous expression of TLR4 is retained by hNSC surviving after transplantation in ALS rats or immunocompromised mice, thus irrespectively of the neuroinflammatory environment. The characterization of downstream signaling of TLR4 in hNSCs has suggested some activation of the inflammasome pathway. This study suggests TLR4 signaling as essential for hNSC self-renewal and as a novel target for the study of neurogenetic mechanisms.


Assuntos
Proliferação de Células , Células-Tronco Neurais/metabolismo , Neurogênese , Receptor 4 Toll-Like/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/cirurgia , Animais , Apoptose , Linhagem Celular , Modelos Animais de Doenças , Humanos , Hospedeiro Imunocomprometido , Masculino , Camundongos Nus , Células-Tronco Neurais/transplante , Ratos Transgênicos , Transdução de Sinais , Esferoides Celulares , Superóxido Dismutase-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA