Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
World J Gastroenterol ; 27(29): 4846-4861, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34447230

RESUMO

Hepatitis C virus (HCV) infection is widespread and affects 71 million people worldwide. Although hepatic manifestations are the most frequent, ranging from chronic hepatitis to cirrhosis and hepatocellular carcinoma, it is also associated with several extrahepatic manifestations. Infected patients may present non-specific neurological symptoms, regardless of the presence of liver cirrhosis. Several pathogenetic mechanisms underlying neurological symptoms have been hypothesized: neuroinvasion, immune-mediated damage, neurotransmitter alterations and cryoglobulinemia. Alterations of the central nervous system include cerebral vasculopathy, acute or subacute encephalopathy and inflammatory disorders. HCV infection may be responsible for neuropathies, of which the most frequent form is symmetrical axonal sensory or sensory-motor polyneuropathy which causes loss of leg sensitivity and weakness. Up to 50% of patients with HCV infection may experience cognitive decline and psychological disorders, such as depression and fatigue. HCV associated neurocognitive disorder is independent of the presence of liver cirrhosis and affects different domains than in patients with hepatic encephalopathy. It can be studied using specific tests that mainly explore executive functions, verbal learning and verbal recall. These disorders significantly reduce the quality of life. The new antiviral therapies improve the extrahepatic symptoms of HCV infection and their success depends on the achievement of sustained virological response. However, the effect of therapy may differ depending on the type of organ involved; neurological symptoms can be irreversible if there is organic liver damage. The aim of this review is to provide a critical overview of physiopathological mechanisms, diagnostic and therapeutic strategies of the neurological and psychiatric effects of HCV infection.


Assuntos
Hepatite C Crônica , Hepatite C , Neoplasias Hepáticas , Antivirais/uso terapêutico , Hepacivirus , Hepatite C/complicações , Hepatite C/tratamento farmacológico , Hepatite C Crônica/tratamento farmacológico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Qualidade de Vida
3.
Sci Rep ; 11(1): 2557, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510179

RESUMO

Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive cancer with marked resistance to chemotherapeutics without therapies. The tumour microenvironment of iCCA is enriched of Cancer-Stem-Cells expressing Epithelial-to-Mesenchymal Transition (EMT) traits, being these features associated with aggressiveness and drug resistance. Treatment with the anti-diabetic drug Metformin, has been recently associated with reduced incidence of iCCA. We aimed to evaluate the anti-cancerogenic effects of Metformin in vitro and in vivo on primary cultures of human iCCA. Our results showed that Metformin inhibited cell proliferation and induced dose- and time-dependent apoptosis of iCCA. The migration and invasion of iCCA cells in an extracellular bio-matrix was also significantly reduced upon treatments. Metformin increased the AMPK and FOXO3 and induced phosphorylation of activating FOXO3 in iCCA cells. After 12 days of treatment, a marked decrease of mesenchymal and EMT genes and an increase of epithelial genes were observed. After 2 months of treatment, in order to simulate chronic administration, Cytokeratin-19 positive cells constituted the majority of cell cultures paralleled by decreased Vimentin protein expression. Subcutaneous injection of iCCA cells previously treated with Metformin, in Balb/c-nude mice failed to induce tumour development. In conclusion, Metformin reverts the mesenchymal and EMT traits in iCCA by activating AMPK-FOXO3 related pathways suggesting it might have therapeutic implications.


Assuntos
Colangiocarcinoma/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Metformina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Proteína Forkhead Box O3/metabolismo , Humanos , Camundongos , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos
4.
Hepatology ; 73(1): 144-159, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32978808

RESUMO

BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) is a very aggressive cancer showing the presence of high cancer stem cells (CSCs). Doublecortin-like kinase1 (DCLK1) has been demonstrated as a CSC marker in different gastroenterological solid tumors. Our aim was to evaluate in vitro the expression and the biological function of DCLK1 in intrahepatic CCA (iCCA) and perihilar CCA (pCCA). APPROACH AND RESULTS: Specimens surgically resected of human CCA were enzymatically digested, submitted to immunosorting for specific CSC markers (LGR5 [leucine-rich repeat-containing G protein-coupled receptor], CD [clusters of differentiation] 90, EpCAM [epithelial cell adhesion molecule], CD133, and CD13), and primary cell cultures were prepared. DCLK1 expression was analyzed in CCA cell cultures by real-time quantitative PCR, western blot, and immunofluorescence. Functional studies have been performed by evaluating the effects of selective DCLK1 inhibitor (LRRK2-IN-1) on cell proliferation (MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay, cell population doubling time), apoptosis, and colony formation capacity. DCLK1 was investigated in situ by immunohistochemistry and real-time quantitative PCR. DCLK1 serum concentration was analyzed by enzyme-linked immunosorbent assay. We describe DCLK1 in CCA with an increased gene and protein DCLK1 expression in pCCALGR5+ and in iCCACD133+ cells compared with unsorted cells. LRRK2-IN-1 showed an anti-proliferative effect in a dose-dependent manner. LRRK2-IN-1 markedly impaired cell proliferation, induced apoptosis, and decreased colony formation capacity and colony size in both iCCA and pCCA compared with the untreated cells. In situ analysis confirmed that DCLK1 is present only in tumors, and not in healthy tissue. Interestingly, DCLK1 was detected in the human serum samples of patients with iCCA (high), pCCA (high), HCC (low), and cirrhosis (low), but it was almost undetectable in healthy controls. CONCLUSIONS: DCLK1 characterizes a specific CSC subpopulation of iCCACD133+ and pCCALGR5+ , and its inhibition exerts anti-neoplastic effects in primary CCA cell cultures. Human DCLK1 serum might represent a serum biomarker for the early CCA diagnosis.


Assuntos
Neoplasias dos Ductos Biliares/genética , Biomarcadores Tumorais/biossíntese , Colangiocarcinoma/genética , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Proteínas Serina-Treonina Quinases/biossíntese , Receptores Acoplados a Proteínas G/biossíntese , Neoplasias dos Ductos Biliares/patologia , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Proliferação de Células , Colangiocarcinoma/patologia , Quinases Semelhantes a Duplacortina , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células-Tronco Neoplásicas/patologia , Proteínas Serina-Treonina Quinases/genética , Receptores Acoplados a Proteínas G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA