Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36297768

RESUMO

The root-knot nematode (RKN), Meloidogyne incognita, is a devastating soybean pathogen worldwide. The use of resistant cultivars is the most effective method to prevent economic losses caused by RKNs. To elucidate the mechanisms involved in resistance to RKN, we determined the proteome and transcriptome profiles from roots of susceptible (BRS133) and highly tolerant (PI 595099) Glycine max genotypes 4, 12, and 30 days after RKN infestation. After in silico analysis, we described major defense molecules and mechanisms considered constitutive responses to nematode infestation, such as mTOR, PI3K-Akt, relaxin, and thermogenesis. The integrated data allowed us to identify protein families and metabolic pathways exclusively regulated in tolerant soybean genotypes. Among them, we highlighted the phenylpropanoid pathway as an early, robust, and systemic defense process capable of controlling M. incognita reproduction. Associated with this metabolic pathway, 29 differentially expressed genes encoding 11 different enzymes were identified, mainly from the flavonoid and derivative pathways. Based on differential expression in transcriptomic and proteomic data, as well as in the expression profile by RT-qPCR, and previous studies, we selected and overexpressed the GmPR10 gene in transgenic tobacco to assess its protective effect against M. incognita. Transgenic plants of the T2 generation showed up to 58% reduction in the M. incognita reproduction factor. Finally, data suggest that GmPR10 overexpression can be effective against the plant parasitic nematode M. incognita, but its mechanism of action remains unclear. These findings will help develop new engineered soybean genotypes with higher performance in response to RKN infections.

2.
Curr Pharm Des ; 25(6): 642-653, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30914015

RESUMO

MicroRNA (miRNAs), a class of small, endogenous non-coding RNA molecules of about 21-24 nucleotides in length, have unraveled a new modulatory network of RNAs that form an additional level of posttranscriptional gene regulation by targeting messenger RNAs (mRNAs). These miRNAs possess the ability to regulate gene expression by modulating the stability of mRNAs, controlling their translation rates, and consequently regulating protein synthesis. Substantial experimental evidence established the involvement of miRNAs in most biological processes like growth, differentiation, development, and metabolism in mammals including humans. An aberrant expression of miRNAs has been implicated in several pathologies, including cancer. The association of miRNAs with tumor growth, development, and metastasis depicts their potential as effective diagnostic and prognostic biomarkers. Furthermore, exploitation of the role of different miRNAs as oncogenes or tumor suppressors has aided in designing several miRNA-based therapeutic approaches for treating cancer patients whose clinical trials are underway. In this review, we aim to summarize the biogenesis of miRNAs and the dysregulations in these pathways that result in various pathologies and in some cases, resistance to drug treatment. We provide a detailed review of the miRNA expression signatures in different cancers along with their diagnostic and prognostic utility. Furthermore, we elaborate on the potential employment of miRNAs to enhance cancer cell apoptosis, regress tumor progression and even overcome miRNA-induced drug resistance.


Assuntos
MicroRNAs/genética , Neoplasias/genética , Animais , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Oncogenes , RNA Mensageiro
3.
Curr Pharm Des ; 24(24): 2839-2848, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30205794

RESUMO

The FOXO (Forkhead box O) transcription factors are implicated in several signaling pathways and play a vital role in various cellular and physiological processes include for instance, ROS (reactive oxygen species) response, cell proliferation, regulation of programmed cell death, longevity, metabolism and cancer and regulation of cell cycle. In humans, the four FOXO family members are responsible for resemblance in their structure, regulation and functions. FOXO1 gene is highly expressed in adipose tissues and it affects the regulation of glycogenolysis and gluconeogenesis through insulin signaling. The gene of FOXO3 is highly expressed in the kidney, heart, spleen and brain and is characterized as diverse forkhead DNA-binding domain of transcription factors. The FOXO3 is a tumor suppressor gene and found to interact with p53, the trigger for apoptosis through BCl2 family genes and a regulator of Notch signaling pathway for the self-renewal of stem cells. Therefore, FOXOs remains to be a fascinating and potential target to acquire novel therapeutic approaches to cure cancer. This review will provide a comprehensive overview about the biology of FOXO proteins, which can be utilized for developing current therapeutic approaches to treat cancer.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Neoplasias/metabolismo , Animais , Antineoplásicos/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Humanos , Hipoglicemiantes/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA