Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17151, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816748

RESUMO

Corrosion constitutes a significant issue in industries that handle metals. Corrosion inhibitors with a low impact on the environment provide a significant economic benefit in various engineering applications. In this work, the effectiveness of olive leaves extract is evaluated as a cost-effective and environmentally-friendly corrosion inhibitor. The corrosion of carbon steel in different concentrations of hydrochloric acid (0.1, 1.0, and 2.0 M) when protected by an aqueous solution of olive leaf extract of concentrations ranging from 10 to 60 ppm is investigated. A green extraction process based upon water extraction is used to ensure minimum impact on the environment. Results show that the corrosion inhibition efficiency increased as the concentration of the olive leaf extract increased. An analysis of variance showed a significant effect of acidic molarity, temperature, and inhibitor concentration on the corrosion rate. A significant statistical model indicates that the inhibitor exhibits higher efficiencies at higher acidic molarity. Results of SEM and EDX also demonstrated that a protective film of the inhibitor on the specimen surface plays a role in corrosion inhibition, suggesting that the inhibitor molecules are adsorbed at the interface between the carbon steel and the acid solution. The study provides an insight on the corrosion mechanism and highlights the potential of olive oil extract as an eco-friendly alternative to traditional corrosion inhibitors.

3.
Polymers (Basel) ; 13(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34641041

RESUMO

Organic photovoltaic research is continuing in order to improve the efficiency and stability of the products. Organic devices have recently demonstrated excellent efficiency, bringing them closer to the market. Understanding the relationship between the microscopic parameters of the device and the conditions under which it is prepared and operated is essential for improving performance at the device level. This review paper emphasizes the importance of the parameter extraction stage for organic solar cell investigations by offering various device models and extraction methodologies. In order to link qualitative experimental measurements to quantitative microscopic device parameters with a minimum number of experimental setups, parameter extraction is a valuable step. The number of experimental setups directly impacts the pace and cost of development. Several experimental and material processing procedures, including the use of additives, annealing, and polymer chain engineering, are discussed in terms of their impact on the parameters of organic solar cells. Various analytical, numerical, hybrid, and optimization methods were introduced for parameter extraction based on single, multiple diodes and drift-diffusion models. Their validity for organic devices was tested by extracting the parameters of some available devices from the literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA