Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(21): e2318874121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38753510

RESUMO

The single-pass transmembrane protein Stromal Interaction Molecule 1 (STIM1), located in the endoplasmic reticulum (ER) membrane, possesses two main functions: It senses the ER-Ca2+ concentration and directly binds to the store-operated Ca2+ channel Orai1 for its activation when Ca2+ recedes. At high resting ER-Ca2+ concentration, the ER-luminal STIM1 domain is kept monomeric but undergoes di/multimerization once stores are depleted. Luminal STIM1 multimerization is essential to unleash the STIM C-terminal binding site for Orai1 channels. However, structural basis of the luminal association sites has so far been elusive. Here, we employed molecular dynamics (MD) simulations and identified two essential di/multimerization segments, the α7 and the adjacent region near the α9-helix in the sterile alpha motif (SAM) domain. Based on MD results, we targeted the two STIM1 SAM domains by engineering point mutations. These mutations interfered with higher-order multimerization of ER-luminal fragments in biochemical assays and puncta formation in live-cell experiments upon Ca2+ store depletion. The STIM1 multimerization impeded mutants significantly reduced Ca2+ entry via Orai1, decreasing the Ca2+ oscillation frequency as well as store-operated Ca2+ entry. Combination of the ER-luminal STIM1 multimerization mutations with gain of function mutations and coexpression of Orai1 partially ameliorated functional defects. Our data point to a hydrophobicity-driven binding within the ER-luminal STIM1 multimer that needs to switch between resting monomeric and activated multimeric state. Altogether, these data reveal that interactions between SAM domains of STIM1 monomers are critical for multimerization and activation of the protein.


Assuntos
Proteínas de Neoplasias , Multimerização Proteica , Molécula 1 de Interação Estromal , Humanos , Sítios de Ligação , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Simulação de Dinâmica Molecular , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/química , Proteína ORAI1/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/química , Ligação Proteica , Domínios Proteicos , Molécula 1 de Interação Estromal/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/química
2.
Nat Commun ; 14(1): 1286, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890174

RESUMO

Ca2+ release-activated Ca2+ (CRAC) channels, indispensable for the immune system and various other human body functions, consist of two transmembrane (TM) proteins, the Ca2+-sensor STIM1 in the ER membrane and the Ca2+ ion channel Orai1 in the plasma membrane. Here we employ genetic code expansion in mammalian cell lines to incorporate the photocrosslinking unnatural amino acids (UAA), p-benzoyl-L-phenylalanine (Bpa) and p-azido-L-phenylalanine (Azi), into the Orai1 TM domains at different sites. Characterization of the respective UAA-containing Orai1 mutants using Ca2+ imaging and electrophysiology reveal that exposure to UV light triggers a range of effects depending on the UAA and its site of incorporation. In particular, photoactivation at A137 using Bpa in Orai1 activates Ca2+ currents that best match the biophysical properties of CRAC channels and are capable of triggering downstream signaling pathways such as nuclear factor of activated T-cells (NFAT) translocation into the nucleus without the need for the physiological activator STIM1.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Animais , Humanos , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Canais de Cálcio/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Proteínas de Membrana/metabolismo , Membrana Celular/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Mamíferos/metabolismo , Proteínas de Neoplasias/metabolismo
3.
Cells ; 11(11)2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35681544

RESUMO

All human life starts with a calcium (Ca2+) wave. This ion regulates a plethora of cellular functions ranging from fertilisation and birth to development and cell death. A sophisticated system is responsible for maintaining the essential, tight concentration of calcium within cells. Intricate components of this Ca2+ network are store-operated calcium channels in the cells' membrane. The best-characterised store-operated channel is the Ca2+ release-activated Ca2+ (CRAC) channel. Currents through CRAC channels are critically dependent on the correct function of two proteins: STIM1 and Orai1. A disruption of the precise mechanism of Ca2+ entry through CRAC channels can lead to defects and in turn to severe impacts on our health. Mutations in either STIM1 or Orai1 proteins can have consequences on our immune cells, the cardiac and nervous system, the hormonal balance, muscle function, and many more. There is solid evidence that altered Ca2+ signalling through CRAC channels is involved in the hallmarks of cancer development: uncontrolled cell growth, resistance to cell death, migration, invasion, and metastasis. In this work we highlight the importance of Ca2+ and its role in human health and disease with focus on CRAC channels.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Cálcio , Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Humanos , Alfabetização , Proteína ORAI1/metabolismo
4.
Cancers (Basel) ; 13(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944977

RESUMO

The interplay of SK3, a Ca2+ sensitive K+ ion channel, with Orai1, a Ca2+ ion channel, has been reported to increase cytosolic Ca2+ levels, thereby triggering proliferation of breast and colon cancer cells, although a molecular mechanism has remained elusive to date. We show in the current study, via heterologous protein expression, that Orai1 can enhance SK3 K+ currents, in addition to constitutively bound calmodulin (CaM). At low cytosolic Ca2+ levels that decrease SK3 K+ permeation, co-expressed Orai1 potentiates SK3 currents. This positive feedback mechanism of SK3 and Orai1 is enabled by their close co-localization. Remarkably, we discovered that loss of SK3 channel activity due to overexpressed CaM mutants could be restored by Orai1, likely via its interplay with the SK3-CaM binding site. Mapping for interaction sites within Orai1, we identified that the cytosolic strands and pore residues are critical for a functional communication with SK3. Moreover, STIM1 has a bimodal role in SK3-Orai1 regulation. Under physiological ionic conditions, STIM1 is able to impede SK3-Orai1 interplay by significantly decreasing their co-localization. Forced STIM1-Orai1 activity and associated Ca2+ influx promote SK3 K+ currents. The dynamic regulation of Orai1 to boost endogenous SK3 channels was also determined in the human prostate cancer cell line LNCaP.

5.
Cell Mol Life Sci ; 78(19-20): 6645-6667, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34498097

RESUMO

The calcium release-activated calcium (CRAC) channel consists of STIM1, a Ca2+ sensor in the endoplasmic reticulum (ER), and Orai1, the Ca2+ ion channel in the plasma membrane. Ca2+ store depletion triggers conformational changes and oligomerization of STIM1 proteins and their direct interaction with Orai1. Structural alterations include the transition of STIM1 C-terminus from a folded to an extended conformation thereby exposing CAD (CRAC activation domain)/SOAR (STIM1-Orai1 activation region) for coupling to Orai1. In this study, we discovered that different point mutations of F394 in the small alpha helical segment (STIM1 α2) within the CAD/SOAR apex entail a rich plethora of effects on diverse STIM1 activation steps. An alanine substitution (STIM1 F394A) destabilized the STIM1 quiescent state, as evident from its constitutive activity. Single point mutation to hydrophilic, charged amino acids (STIM1 F394D, STIM1 F394K) impaired STIM1 homomerization and subsequent Orai1 activation. MD simulations suggest that their loss of homomerization may arise from altered formation of the CC1α1-SOAR/CAD interface and potential electrostatic interactions with lipid headgroups in the ER membrane. Consistent with these findings, we provide experimental evidence that the perturbing effects of F394D depend on the distance of the apex from the ER membrane. Taken together, our results suggest that the CAD/SOAR apex is in the immediate vicinity of the ER membrane in the STIM1 quiescent state and that different mutations therein can impact the STIM1/Orai1 activation cascade in various manners. Legend: Upon intracellular Ca2+ store depletion of the endoplasmic reticulum (ER), Ca2+ dissociates from STIM1. As a result, STIM1 adopts an elongated conformation and elicits Ca2+ influx from the extracellular matrix (EM) into the cell due to binding to and activation of Ca2+-selective Orai1 channels (left). The effects of three point mutations within the SOARα2 domain highlight the manifold roles of this region in the STIM1/Orai1 activation cascade: STIM1 F394A is active irrespective of the intracellular ER Ca2+ store level, but activates Orai1 channels to a reduced extent (middle). On the other hand, STIM1 F394D/K cannot adopt an elongated conformation upon Ca2+ store-depletion due to altered formation of the CC1α1-SOAR/CAD interface and/or electrostatic interaction of the respective side-chain charge with corresponding opposite charges on lipid headgroups in the ER membrane (right).


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio/genética , Proteínas de Neoplasias/genética , Molécula 1 de Interação Estromal/genética , Cálcio/metabolismo , Canais de Cálcio/genética , Linhagem Celular , Membrana Celular/genética , Retículo Endoplasmático/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Mutação Puntual/genética
7.
J Biol Chem ; 296: 100224, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33361160

RESUMO

The initial activation step in the gating of ubiquitously expressed Orai1 calcium (Ca2+) ion channels represents the activation of the Ca2+-sensor protein STIM1 upon Ca2+ store depletion of the endoplasmic reticulum. Previous studies using constitutively active Orai1 mutants gave rise to, but did not directly test, the hypothesis that STIM1-mediated Orai1 pore opening is accompanied by a global conformational change of all Orai transmembrane domain (TM) helices within the channel complex. We prove that a local conformational change spreads omnidirectionally within the Orai1 complex. Our results demonstrate that these locally induced global, opening-permissive TM motions are indispensable for pore opening and require clearance of a series of Orai1 gating checkpoints. We discovered these gating checkpoints in the middle and cytosolic extended TM domain regions. Our findings are based on a library of double point mutants that contain each one loss-of-function with one gain-of-function point mutation in a series of possible combinations. We demonstrated that an array of loss-of-function mutations are dominant over most gain-of-function mutations within the same as well as of an adjacent Orai subunit. We further identified inter- and intramolecular salt-bridge interactions of Orai subunits as a core element of an opening-permissive Orai channel architecture. Collectively, clearance and synergistic action of all these gating checkpoints are required to allow STIM1 coupling and Orai1 pore opening. Our results unravel novel insights in the preconditions of the unique fingerprint of CRAC channel activation, provide a valuable source for future structural resolutions, and help to understand the molecular basis of disease-causing mutations.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Ativação do Canal Iônico/genética , Proteínas de Neoplasias/química , Proteína ORAI1/química , Molécula 1 de Interação Estromal/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Regulação da Expressão Gênica , Genes Reporter , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Lipossomos/química , Lipossomos/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Simulação de Dinâmica Molecular , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Técnicas de Patch-Clamp , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
8.
Nat Chem Biol ; 17(2): 196-204, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33106661

RESUMO

The calcium release activated calcium channel is activated by the endoplasmic reticulum-resident calcium sensor protein STIM1. On activation, STIM1 C terminus changes from an inactive, tight to an active, extended conformation. A coiled-coil clamp involving the CC1 and CC3 domains is essential in controlling STIM1 activation, with CC1 as the key entity. The nuclear magnetic resonance-derived solution structure of the CC1 domain represents a three-helix bundle stabilized by interhelical contacts, which are absent in the Stormorken disease-related STIM1 R304W mutant. Two interhelical sites between the CC1α1 and CC1α2 helices are key in controlling STIM1 activation, affecting the balance between tight and extended conformations. Nuclear magnetic resonance-directed mutations within these interhelical interactions restore the physiological, store-dependent activation behavior of the gain-of-function STIM1 R304W mutant. This study reveals the functional impact of interhelical interactions within the CC1 domain for modifying the CC1-CC3 clamp strength to control the activation of STIM1.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Proteínas de Neoplasias/genética , Molécula 1 de Interação Estromal/genética , Transtornos Plaquetários/genética , Clonagem Molecular , Dislexia/genética , Eritrócitos Anormais , Células HEK293 , Humanos , Ictiose/genética , Espectroscopia de Ressonância Magnética , Transtornos de Enxaqueca/genética , Miose/genética , Modelos Moleculares , Fadiga Muscular/genética , Mutação/genética , Conformação de Ácido Nucleico , Proteína ORAI1/genética , Técnicas de Patch-Clamp , Baço/anormalidades
9.
Cell Rep ; 33(3): 108292, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33086068

RESUMO

Store-operated calcium entry (SOCE) through STIM-gated ORAI channels governs vital cellular functions. In this context, SOCE controls cellular redox signaling and is itself regulated by redox modifications. However, the molecular mechanisms underlying this calcium-redox interplay and the functional outcomes are not fully understood. Here, we examine the role of STIM2 in SOCE redox regulation. Redox proteomics identify cysteine 313 as the main redox sensor of STIM2 in vitro and in vivo. Oxidative stress suppresses SOCE and calcium currents in cells overexpressing STIM2 and ORAI1, an effect that is abolished by mutation of cysteine 313. FLIM and FRET microscopy, together with MD simulations, indicate that oxidative modifications of cysteine 313 alter STIM2 activation dynamics and thereby hinder STIM2-mediated gating of ORAI1. In summary, this study establishes STIM2-controlled redox regulation of SOCE as a mechanism that affects several calcium-regulated physiological processes, as well as stress-induced pathologies.


Assuntos
Cálcio/metabolismo , Molécula 2 de Interação Estromal/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular Tumoral , Cisteína/metabolismo , Humanos , Proteínas Sensoras de Cálcio Intracelular/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Molécula 2 de Interação Estromal/genética , Molécula 2 de Interação Estromal/fisiologia
10.
Sci Signal ; 12(608)2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31744929

RESUMO

The stromal interaction molecule 1 (STIM1) has two important functions, Ca2+ sensing within the endoplasmic reticulum and activation of the store-operated Ca2+ channel Orai1, enabling plasma-membrane Ca2+ influx. We combined molecular dynamics (MD) simulations with live-cell recordings and determined the sequential Ca2+-dependent conformations of the luminal STIM1 domain upon activation. Furthermore, we identified the residues within the canonical and noncanonical EF-hand domains that can bind to multiple Ca2+ ions. In MD simulations, a single Ca2+ ion was sufficient to stabilize the luminal STIM1 complex. Ca2+ store depletion destabilized the two EF hands, triggering disassembly of the hydrophobic cleft that they form together with the stable SAM domain. Point mutations associated with tubular aggregate myopathy or cancer that targeted the canonical EF hand, and the hydrophobic cleft yielded constitutively clustered STIM1, which was associated with activation of Ca2+ entry through Orai1 channels. On the basis of our results, we present a model of STIM1 Ca2+ binding and refine the currently known initial steps of STIM1 activation on a molecular level.


Assuntos
Cálcio/metabolismo , Simulação de Dinâmica Molecular , Proteínas de Neoplasias/química , Domínios Proteicos , Desdobramento de Proteína , Molécula 1 de Interação Estromal/química , Algoritmos , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Motivos EF Hand , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Confocal , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/química , Proteína ORAI1/metabolismo , Ratos , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
11.
Nat Commun ; 9(1): 825, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483506

RESUMO

STIM1 and Orai1 are key components of the Ca2+-release activated Ca2+ (CRAC) current. Orai1, which represents the subunit forming the CRAC channel complex, is activated by the ER resident Ca2+ sensor STIM1. The genetically inherited Stormorken syndrome disease has been associated with the STIM1 single point R304W mutant. The resulting constitutive activation of Orai1 mainly involves the CRAC-activating domain CAD/SOAR of STIM1, the exposure of which is regulated by the molecular interplay between three cytosolic STIM1 coiled-coil (CC) domains. Here we present a dual mechanism by which STIM1 R304W attains the pathophysiological, constitutive activity eliciting the Stormorken syndrome. The R304W mutation induces a helical elongation within the CC1 domain, which together with an increased CC1 homomerization, destabilize the resting state of STIM1. This culminates, even in the absence of store depletion, in structural extension and CAD/SOAR exposure of STIM1 R304W leading to constitutive CRAC channel activation and Stormorken disease.


Assuntos
Transtornos Plaquetários/genética , Cálcio/química , Dislexia/genética , Ictiose/genética , Transtornos de Enxaqueca/genética , Miose/genética , Proteínas de Neoplasias/química , Proteína ORAI1/química , Mutação Puntual , Baço/anormalidades , Molécula 1 de Interação Estromal/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Transtornos Plaquetários/metabolismo , Transtornos Plaquetários/patologia , Cálcio/metabolismo , Dislexia/metabolismo , Dislexia/patologia , Eritrócitos Anormais/metabolismo , Eritrócitos Anormais/patologia , Expressão Gênica , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Ictiose/metabolismo , Ictiose/patologia , Transporte de Íons , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/patologia , Miose/metabolismo , Miose/patologia , Modelos Moleculares , Fadiga Muscular/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Técnicas de Patch-Clamp , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Baço/metabolismo , Baço/patologia , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
12.
Protein Expr Purif ; 146: 45-50, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29414068

RESUMO

We report a new NMR-scale purification procedure for two recombinant wild type fragments of the stromal interaction molecule 1 (STIM1). This protein acts as a calcium sensor in the endoplasmic reticulum (ER) and extends into the cytosol accumulating at ER - plasma membrane (PM) junctions upon calcium store depletion ultimately leading to activation of the Orai/CRAC channel. The functionally relevant cytosolic part of STIM1 consists of three coiled coil domains, which are mainly involved in intra- and inter-molecular homomeric interactions as well as coupling to and gating of CRAC channels. The optimized one-step rapid purification procedure for two 15N,13C isotope-labeled cytosolic coiled coil fragments, which avoids the problems of previous approaches. The high yields of soluble well folded 15N,13C isotope-labeled cytosolic coiled coil fragments followed by detergent screening provide for initial NMR characterization of these domains. The longer 30.5 kDa fragment represents the largest STIM1 wild type fragment that has been recombinantly prepared and characterized in solution without need for mutation or refolding.


Assuntos
Proteínas de Neoplasias/química , Molécula 1 de Interação Estromal/química , Isótopos de Carbono/química , Isótopos de Carbono/isolamento & purificação , Cromatografia de Afinidade , Difusão Dinâmica da Luz , Eletroforese em Gel de Poliacrilamida , Humanos , Marcação por Isótopo , Proteínas de Neoplasias/isolamento & purificação , Isótopos de Nitrogênio/química , Isótopos de Nitrogênio/isolamento & purificação , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Solubilidade , Molécula 1 de Interação Estromal/isolamento & purificação
13.
J Biol Chem ; 293(4): 1271-1285, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29237733

RESUMO

Ca2+ release-activated Ca2+ (CRAC) channels constitute the major Ca2+ entry pathway into the cell. They are fully reconstituted via intermembrane coupling of the Ca2+-selective Orai channel and the Ca2+-sensing protein STIM1. In addition to the Orai C terminus, the main coupling site for STIM1, the Orai N terminus is indispensable for Orai channel gating. Although the extended transmembrane Orai N-terminal region (Orai1 amino acids 73-91; Orai3 amino acids 48-65) is fully conserved in the Orai1 and Orai3 isoforms, Orai3 tolerates larger N-terminal truncations than Orai1 in retaining store-operated activation. In an attempt to uncover the reason for these isoform-specific structural requirements, we analyzed a series of Orai mutants and chimeras. We discovered that it was not the N termini, but the loop2 regions connecting TM2 and TM3 of Orai1 and Orai3 that featured distinct properties, which explained the different, isoform-specific behavior of Orai N-truncation mutants. Atomic force microscopy studies and MD simulations suggested that the remaining N-terminal portion in the non-functional Orai1 N-truncation mutants formed new, inhibitory interactions with the Orai1-loop2 regions, but not with Orai3-loop2. Such a loop2 swap restored activation of the N-truncation Orai1 mutants. To mimic interactions between the N terminus and loop2 in full-length Orai1 channels, we induced close proximity of the N terminus and loop2 via cysteine cross-linking, which actually caused significant inhibition of STIM1-mediated Orai currents. In aggregate, maintenance of Orai activation required not only the conserved N-terminal region but also permissive communication of the Orai N terminus and loop2 in an isoform-specific manner.


Assuntos
Canais de Cálcio/química , Proteína ORAI1/química , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Células HEK293 , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
14.
J Biol Chem ; 293(4): 1259-1270, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29237734

RESUMO

Calcium (Ca2+) is an essential second messenger required for diverse signaling processes in immune cells. Ca2+ release-activated Ca2+ (CRAC) channels represent one main Ca2+ entry pathway into the cell. They are fully reconstituted via two proteins, the stromal interaction molecule 1 (STIM1), a Ca2+ sensor in the endoplasmic reticulum, and the Ca2+ ion channel Orai in the plasma membrane. After Ca2+ store depletion, STIM1 and Orai couple to each other, allowing Ca2+ influx. CRAC-/STIM1-mediated Orai channel currents display characteristic hallmarks such as high Ca2+ selectivity, an increase in current density when switching from a Ca2+-containing solution to a divalent-free Na+ one, and fast Ca2+-dependent inactivation. Here, we discovered several constitutively active Orai1 and Orai3 mutants, containing substitutions in the TM3 and/or TM4 regions, all of which displayed a loss of the typical CRAC channel hallmarks. Restoring authentic CRAC channel activity required both the presence of STIM1 and the conserved Orai N-terminal portion. Similarly, these structural requisites were found in store-operated Orai channels. Key molecular determinants within the Orai N terminus that together with STIM1 maintained the typical CRAC channel hallmarks were distinct from those that controlled store-dependent Orai activation. In conclusion, the conserved portion of the Orai N terminus is essential for STIM1, as it fine-tunes the open Orai channel gating, thereby establishing authentic CRAC channel activity.


Assuntos
Canais de Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Sinalização do Cálcio , Ativação do Canal Iônico , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Canais de Cálcio/genética , Canais de Cálcio Ativados pela Liberação de Cálcio/genética , Células HEK293 , Humanos , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Domínios Proteicos , Molécula 1 de Interação Estromal/genética
15.
Adv Exp Med Biol ; 898: 25-46, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27161223

RESUMO

Ca(2+) influx via store-operated Ca(2+) release activated Ca(2+) (CRAC) channels represents a main signalling pathway for a variety of cell functions, including T-cell activation as well as mast-cell degranulation. Depletion of [Ca(2+)]ER results in activation of Ca(2+) channels within the plasmamembrane that mediate sustained Ca(2+) influx which is required for refilling Ca(2+) stores and down-stream Ca(2+) signalling. The CRAC channel is the best characterized store-operated channel (SOC) with well-defined electrophysiological properties. In recent years, the molecular components of the CRAC channel have been defined. The ER - located Ca(2+)-sensor, STIM1 and the Ca(2+)-selective ion pore, Orai1 in the membrane are sufficient to fully reconstitute CRAC currents. Stromal interaction molecule (STIM) 1 is localized in the ER, senses [Ca(2+)]ER and activates the CRAC channel upon store depletion by direct binding to Orai1 in the plasmamembrane. The identification of STIM1 and Orai1 and recently the structural resolution of both proteins by X-ray crystallography and nuclear magnetic resonance substantiated many findings from structure-function studies which has substantially improved the understanding of CRAC channel activation. Within this review, we summarize the functional and structural mechanisms of CRAC channel regulation, present a detailed overview of the STIM1/Orai1 signalling pathway where we focus on the critical domains mediating interactions and on the ion permeation pathway. We portray a mechanistic view of the steps in the dynamics of CRAC channel signalling ranging from STIM1 oligomerization over STIM1-Orai1 coupling to CRAC channel activation and permeation.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Humanos , Transporte de Íons , Proteínas de Membrana/química , Modelos Moleculares , Proteínas de Neoplasias/química , Molécula 1 de Interação Estromal
16.
Sci Signal ; 9(412): ra10, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26814231

RESUMO

STIM1 (stromal interaction molecule 1) and Orai proteins are the essential components of Ca(2+) release-activated Ca(2+) (CRAC) channels. We focused on the role of cholesterol in the regulation of STIM1-mediated Orai1 currents. Chemically induced cholesterol depletion enhanced store-operated Ca(2+) entry (SOCE) and Orai1 currents. Furthermore, cholesterol depletion in mucosal-type mast cells augmented endogenous CRAC currents, which were associated with increased degranulation, a process that requires calcium influx. Single point mutations in the Orai1 amino terminus that would be expected to abolish cholesterol binding enhanced SOCE to a similar extent as did cholesterol depletion. The increase in Orai1 activity in cells expressing these cholesterol-binding-deficient mutants occurred without affecting the amount in the plasma membrane or the coupling of STIM1 to Orai1. We detected cholesterol binding to an Orai1 amino-terminal fragment in vitro and to full-length Orai1 in cells. Thus, our data showed that Orai1 senses the amount of cholesterol in the plasma membrane and that the interaction of Orai1 with cholesterol inhibits its activity, thereby limiting SOCE.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Colesterol/metabolismo , Biotinilação , Linhagem Celular , Membrana Celular/metabolismo , Colesterol Oxidase/metabolismo , Dicroísmo Circular , Fenômenos Eletrofisiológicos , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Histamina/metabolismo , Humanos , Mastócitos/metabolismo , Mutação , Proteína ORAI1 , Peptídeos/metabolismo , Mutação Puntual , Estrutura Terciária de Proteína , Transdução de Sinais , Espectrometria de Fluorescência
17.
Proc Natl Acad Sci U S A ; 112(19): 6206-11, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25918394

RESUMO

Store-operated Ca(2+) entry (SOCE) is a universal Ca(2+) influx pathway that is important for the function of many cell types. SOCE occurs upon depletion of endoplasmic reticulum (ER) Ca(2+) stores and relies on a complex molecular interplay between the plasma membrane (PM) Ca(2+) channel ORAI1 and the ER Ca(2+) sensor stromal interaction molecule (STIM) 1. Patients with null mutations in ORAI1 or STIM1 genes present with severe combined immunodeficiency (SCID)-like disease. Here, we describe the molecular mechanisms by which a loss-of-function STIM1 mutation (R429C) in human patients abolishes SOCE. R429 is located in the third coiled-coil (CC3) domain of the cytoplasmic C terminus of STIM1. Mutation of R429 destabilizes the CC3 structure and alters the conformation of the STIM1 C terminus, thereby releasing a polybasic domain that promotes STIM1 recruitment to ER-PM junctions. However, the mutation also impairs cytoplasmic STIM1 oligomerization and abolishes STIM1-ORAI1 interactions. Thus, despite its constitutive localization at ER-PM junctions, mutant STIM1 fails to activate SOCE. Our results demonstrate multifunctional roles of the CC3 domain in regulating intra- and intermolecular STIM1 interactions that control (i) transition of STIM1 from a quiescent to an active conformational state, (ii) cytoplasmic STIM1 oligomerization, and (iii) STIM1-ORAI1 binding required for ORAI1 activation.


Assuntos
Síndromes de Imunodeficiência/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Cálcio/química , Canais de Cálcio/metabolismo , Citoplasma/metabolismo , Dimerização , Retículo Endoplasmático/metabolismo , Transferência Ressonante de Energia de Fluorescência , Genes Recessivos , Células HEK293 , Homozigoto , Humanos , Microscopia Confocal , Proteína ORAI1 , Estrutura Terciária de Proteína , Molécula 1 de Interação Estromal
18.
J Biol Chem ; 289(48): 33231-44, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25342749

RESUMO

Store-operated Ca(2+) entry, essential for the adaptive immunity, is initiated by the endoplasmic reticulum (ER) Ca(2+) sensor STIM1. Ca(2+) entry occurs through the plasma membrane resident Ca(2+) channel Orai1 that directly interacts with the C-terminal STIM1 domain, named SOAR/CAD. Depletion of the ER Ca(2+) store controls this STIM1/Orai1 interaction via transition to an extended STIM1 C-terminal conformation, exposure of the SOAR/CAD domain, and STIM1/Orai1 co-clustering. Here we developed a novel approach termed FRET-derived Interaction in a Restricted Environment (FIRE) in an attempt to dissect the interplay of coiled-coil (CC) interactions in controlling STIM1 quiescent as well as active conformation and cluster formation. We present evidence of a sequential activation mechanism in the STIM1 cytosolic domains where the interaction between CC1 and CC3 segment regulates both SOAR/CAD exposure and CC3-mediated higher-order oligomerization as well as cluster formation. These dual levels of STIM1 auto-inhibition provide efficient control over the coupling to and activation of Orai1 channels.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Canais de Cálcio/genética , Membrana Celular/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Proteína ORAI1 , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Molécula 1 de Interação Estromal
19.
Nat Commun ; 4: 2963, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24351972

RESUMO

Orai1 calcium channels in the plasma membrane are activated by stromal interaction molecule-1 (STIM1), an endoplasmic reticulum calcium sensor, to mediate store-operated calcium entry (SOCE). The cytosolic region of STIM1 contains a long putative coiled-coil (CC)1 segment and shorter CC2 and CC3 domains. Here we present solution nuclear magnetic resonance structures of a trypsin-resistant CC1-CC2 fragment in the apo and Orai1-bound states. Each CC1-CC2 subunit forms a U-shaped structure that homodimerizes through antiparallel interactions between equivalent α-helices. The CC2:CC2' helix pair clamps two identical acidic Orai1 C-terminal helices at opposite ends of a hydrophobic/basic STIM-Orai association pocket. STIM1 mutants disrupting CC1:CC1' interactions attenuate, while variants promoting CC1 stability spontaneously activate Orai1 currents. CC2 mutations cause remarkable variability in Orai1 activation because of a dual function in binding Orai1 and autoinhibiting STIM1 oligomerization via interactions with CC3. We conclude that SOCE is activated through dynamic interplay between STIM1 and Orai1 helices.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Sequência de Aminoácidos , Citosol/metabolismo , Dimerização , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Dados de Sequência Molecular , Mutagênese , Mutação , Proteína ORAI1 , Técnicas de Patch-Clamp , Molécula 1 de Interação Estromal
20.
Channels (Austin) ; 7(5): 330-43, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24107921

RESUMO

Ca(2+) influx via store-operated Ca(2+) release activated Ca(2+) (CRAC) channels represents a main signaling pathway for T-cell activation as well as mast-cell degranulation. The ER-located Ca(2+)-sensor, STIM1 and the Ca(2+)-selective ion pore, Orai1 in the membrane are sufficient to fully reconstitute CRAC currents. Their identification, but even more the recent structural resolution of both proteins by X-ray crystallography has substantially advanced the understanding of the activation mechanism of CRAC channels. In this review, we provide a detailed description of the STIM1/Orai1 signaling pathway thereby focusing on the critical domains mediating both, intra- as well as intermolecular interactions and on the ion permeation pathway. Based on the results of functional studies as well as the recently published crystal structures, we portray a mechanistic view of the steps in the CRAC channel signaling cascade ranging from STIM1 oligomerization over STIM1-Orai1 coupling to the ultimate Orai1 channel activation and permeation.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Canais de Cálcio/química , Sinalização do Cálcio , Humanos , Proteínas de Membrana/química , Proteínas de Neoplasias/química , Proteína ORAI1 , Conformação Proteica , Molécula 1 de Interação Estromal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA