Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proteomics ; 24(12-13): e2300002, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38143279

RESUMO

Cancer remains one of the most complex and challenging diseases in mankind. To address the need for a personalized treatment approach for particularly complex tumor cases, molecular tumor boards (MTBs) have been initiated. MTBs are interdisciplinary teams that perform in-depth molecular diagnostics to cooperatively and interdisciplinarily advise on the best therapeutic strategy. Current molecular diagnostics are routinely performed on the transcriptomic and genomic levels, aiming to identify tumor-driving mutations. However, these approaches can only partially capture the actual phenotype and the molecular key players of tumor growth and progression. Thus, direct investigation of the expressed proteins and activated signaling pathways provide valuable complementary information on the tumor-driving molecular characteristics of the tissue. Technological advancements in mass spectrometry-based proteomics enable the robust, rapid, and sensitive detection of thousands of proteins in minimal sample amounts, paving the way for clinical proteomics and the probing of oncogenic signaling activity. Therefore, proteomics is currently being integrated into molecular diagnostics within MTBs and holds promising potential in aiding tumor classification and identifying personalized treatment strategies. This review introduces MTBs and describes current clinical proteomics, its potential in precision oncology, and highlights the benefits of multi-omic data integration.


Assuntos
Neoplasias , Medicina de Precisão , Proteômica , Humanos , Proteômica/métodos , Neoplasias/metabolismo , Neoplasias/genética , Medicina de Precisão/métodos , Espectrometria de Massas/métodos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise
2.
Pathologie (Heidelb) ; 44(Suppl 3): 176-182, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37999758

RESUMO

Proteomics, the study of proteins and their functions, has greatly evolved due to advances in analytical chemistry and computational biology. Unlike genomics or transcriptomics, proteomics captures the dynamic and diverse nature of proteins, which play crucial roles in cellular processes. This is exemplified in cancer, where genomic and transcriptomic information often falls short in reflecting actual protein expression and interactions. Liquid chromatography-mass spectrometry (LC-MS) is pivotal in proteomic data generation, enabling high-throughput analysis of protein samples. The MS-based workflow involves protein digestion, chromatographic separation, ionization, and fragmentation, leading to peptide identification and quantification. Computational biostatistics, particularly using tools in R (R Foundation for Statistical Computing, Vienna, Austria; www.R-project.org ), aid in data analysis, revealing protein expression patterns and correlations with clinical variables. Proteomic studies can be explorative, aiming to characterize entire proteomes, or targeted, focusing on specific proteins of interest. The integration of proteomics with genomics addresses database limitations and enhances peptide identification. Case studies in intrahepatic cholangiocarcinoma, glioblastoma multiforme, and pancreatic ductal adenocarcinoma highlight proteomics' clinical applications, from subtyping cancers to identifying diagnostic markers. Moreover, proteomic data augment molecular tumor boards by providing deeper insights into pathway activities and genomic mutations, supporting personalized treatment decisions. Overall, proteomics contributes significantly to advancing our understanding of cellular biology and improving clinical care.


Assuntos
Neoplasias , Proteômica , Humanos , Proteômica/métodos , Proteoma/genética , Peptídeos , Neoplasias/diagnóstico , Biologia Computacional
3.
Neoplasia ; 36: 100871, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36610378

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) represents one of the most aggressive and lethal malignancies worldwide with an urgent need for new diagnostic and therapeutic strategies. One major risk factor for PDAC is the pre-indication of chronic pancreatitis (CP), which represents highly inflammatory pancreatic tissue. Kallikreins (KLKs) are secreted serine proteases that play an important role in various cancers as components of the tumor microenvironment. Previous studies of KLKs in solid tumors largely relied on either transcriptomics or immunodetection. We present one of the first targeted mass spectrometry profiling of kallikrein proteases in PDAC, CP, and normal pancreas. We show that KLK6 and KLK10 are significantly upregulated in PDAC (n=14) but not in CP (n=7) when compared to normal pancreas (n=16), highlighting their specific intertwining with malignancy. Additional explorative proteome profiling identified 5936 proteins in our pancreatic cohort and observed disease-specific proteome rearrangements in PDAC and CP. As such, PDAC features an enriched proteome motif for extracellular matrix (ECM) and cell adhesion while there is depletion of mitochondrial energy metabolism proteins, reminiscent of the Warburg effect. Although often regarded as a PDAC hallmark, the ECM fingerprint was also observed in CP, alongside with a prototypical inflammatory proteome motif as well as with an increased wound healing process and proteolytic activity, thereby possibly illustrating tissue autolysis. Proteogenomic analysis based on publicly accessible data sources identified 112 PDAC-specific and 32 CP-specific single amino acid variants, which among others affect KRAS and ANKHD1. Our study emphasizes the diagnostic potential of kallikreins and provides novel insights into proteomic characteristics of PDAC and CP.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatite Crônica , Humanos , Proteoma , Proteômica/métodos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Pancreatite Crônica/diagnóstico , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Pâncreas/patologia , Endopeptidases/metabolismo , Calicreínas/genética , Microambiente Tumoral , Proteínas de Ligação a RNA/metabolismo , Neoplasias Pancreáticas
4.
Neoplasia ; 23(12): 1240-1251, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34768110

RESUMO

Colorectal adenocarcinomas (CRC) are one of the most commonly diagnosed tumors worldwide. Colorectal adenocarcinomas primarily metastasize into the liver and (less often) into the peritoneum. Patients suffering from CRC-liver metastasis (CRC-LM) typically present with a dismal overall survival compared to non-metastasized CRC patients. The metastasis process and metastasis-promoting factors in patients with CRC are under intensive debate. However, CRC studies investigating the proteome biology are lacking. Formalin-fixed paraffin-embedded (FFPE) tissue specimens provide a valuable resource for comprehensive proteomic studies of a broad variety of clinical malignancies. The presented pilot study compares the proteome of primary CRC and patient-matched CRC-LM. The applied protocol allows a reproducible and straightforward identification and quantification of over 2,600 proteins within the dissected tumorous tissue. Subsequent unsupervised clustering reveals distinct proteome biologies of the primary CRC and the corresponding CRC-LM. Statistical analysis yields multiple differentially abundant proteins in either primary CRC or their corresponding liver metastases. A more detailed analysis of dysregulated biological processes suggests an active immune response in the liver metastases, including several proteins of the complement system. Proteins with structural roles, e.g. cytoskeleton organization or cell junction assembly appear to be less prominent in liver metastases as compared to primary CRC. Immunohistochemistry corroborates proteomic high expression levels of metabolic proteins in CRC-LM. We further assessed how the in vitro inhibition of two in CRC-LM enriched metabolic proteins affected cell proliferation and chemosensitivity. The presented proteomic investigation in a small clinical cohort promotes a more comprehensive understanding of the distinct proteome biology of primary CRC and their corresponding liver metastases.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/secundário , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Cromatografia Líquida , Análise por Conglomerados , Humanos , Espectrometria de Massas , Projetos Piloto , Proteoma/análise , Proteômica
5.
Proteomes ; 9(2)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070654

RESUMO

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become the most commonly used technique in explorative proteomic research. A variety of open-source tools for peptide-spectrum matching have become available. Most analyses of explorative MS data are performed using conventional settings, such as fully specific enzymatic constraints. Here we evaluated the impact of the fragment mass tolerance in combination with the enzymatic constraints on the performance of three search engines. Three open-source search engines (Myrimatch, X! Tandem, and MSGF+) were evaluated concerning the suitability in semi- and unspecific searches as well as the importance of accurate fragment mass spectra in non-specific peptide searches. We then performed a semispecific reanalysis of the published NCI-60 deep proteome data applying the most suited parameters. Semi- and unspecific LC-MS/MS data analyses particularly benefit from accurate fragment mass spectra while this effect is less pronounced for conventional, fully specific peptide-spectrum matching. Search speed differed notably between the three search engines for semi- and non-specific peptide-spectrum matching. Semispecific reanalysis of NCI-60 proteome data revealed hundreds of previously undescribed N-terminal peptides, including cases of proteolytic processing or likely alternative translation start sites, some of which were ubiquitously present in all cell lines of the reanalyzed panel. Highly accurate MS2 fragment data in combination with modern open-source search algorithms enable the confident identification of semispecific peptides from large proteomic datasets. The identification of previously undescribed N-terminal peptides in published studies highlights the potential of future reanalysis and data mining in proteomic datasets.

6.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33509926

RESUMO

Phycobilisomes are the major pigment-protein antenna complexes that perform photosynthetic light harvesting in cyanobacteria, rhodophyte, and glaucophyte algae. Up to 50% of the cellular nitrogen can be stored in their giant structures. Accordingly, upon nitrogen depletion, phycobilisomes are rapidly degraded following an intricate genetic program. Here, we describe the role of NblD, a cysteine-rich, small protein in this process in cyanobacteria. Deletion of the nblD gene in the cyanobacterium Synechocystis sp. PCC 6803 prevented the degradation of phycobilisomes, leading to a nonbleaching (nbl) phenotype, which could be complemented by a plasmid-localized gene copy. Competitive growth experiments between the ΔnblD and the wild-type strain provided direct evidence for the physiological importance of NblD under nitrogen-limited conditions. Ectopic expression of NblD under nitrogen-replete conditions showed no effect, in contrast to the unrelated proteolysis adaptors NblA1 and NblA2, which can trigger phycobilisome degradation. Transcriptome analysis indicated increased nblA1/2 transcript levels in the ΔnblD strain during nitrogen starvation, implying that NblD does not act as a transcriptional (co)regulator. However, immunoprecipitation and far-western experiments identified the chromophorylated (holo form) of the phycocyanin ß-subunit (CpcB) as its target, while apo-CpcB was not bound. The addition of recombinant NblD to isolated phycobilisomes caused a reduction in phycocyanin absorbance and a broadening and shifting of the peak to lower wavelengths, indicating the occurrence of structural changes. These data demonstrate that NblD plays a crucial role in the coordinated dismantling of phycobilisomes and add it as a factor to the genetically programmed response to nitrogen starvation.


Assuntos
Proteínas de Bactérias/metabolismo , Ficobilissomas/metabolismo , Synechocystis/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sequência Conservada , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Mutação/genética , Nitrogênio/deficiência , Nitrogênio/farmacologia , Fenótipo , Fotossíntese , Filogenia , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Synechocystis/efeitos dos fármacos , Synechocystis/genética , Transcriptoma/genética
7.
Cancer Cell Int ; 20: 52, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32095117

RESUMO

BACKGROUND: Lung cancer is the leading cause of cancer related death worldwide. Over the past 15 years no major improvement of survival rates could be accomplished. The recently discovered histone methyltransferase KMT9 that acts as epigenetic regulator of prostate tumor growth has now raised hopes of enabling new cancer therapies. In this study, we aimed to identify the function of KMT9 in lung cancer. METHODS: We unraveled the KMT9 transcriptome and proteome in A549 lung adenocarcinoma cells using RNA-Seq and mass spectrometry and linked them with functional cell culture, real-time proliferation and flow cytometry assays. RESULTS: We show that KMT9α and -ß subunits of KMT9 are expressed in lung cancer tissue and cell lines. Importantly, high levels of KMT9α correlate with poor patient survival. We identified 460 genes that are deregulated at the RNA and protein level upon knock-down of KMT9α in A549 cells. These genes cluster with proliferation, cell cycle and cell death gene sets as well as with subcellular organelles in gene ontology analysis. Knock-down of KMT9α inhibits lung cancer cell proliferation and induces non-apoptotic cell death in A549 cells. CONCLUSIONS: The novel histone methyltransferase KMT9 is crucial for proliferation and survival of lung cancer cells harboring various mutations. Small molecule inhibitors targeting KMT9 therefore should be further examined as potential milestones in modern epigenetic lung cancer therapy.

8.
Matrix Biol ; 66: 1-21, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29158163

RESUMO

In this study we used a genetic extracellular matrix (ECM) disease to identify mechanisms associated with aggressive behavior of cutaneous squamous cell carcinoma (cSCC). cSCC is one of the most common malignancies and usually has a good prognosis. However, some cSCCs recur or metastasize and cause significant morbidity and mortality. Known factors that are associated with aggressiveness of cSCCs include tumor grading, size, localization and microinvasive behavior. To investigate molecular mechanisms that influence biologic behavior we used global proteomic and histologic analyses of formalin-fixed paraffin-embedded tissue of primary human cSCCs. We compared three groups: non-recurring, non-metastasizing low-risk sporadic cSCCs; metastasizing sporadic cSCCs; and cSCCs from patients with recessive dystrophic epidermolysis bullosa (RDEB). RDEB is a genetic skin blistering and ECM disease caused by collagen VII deficiency. Patients commonly suffer from high-risk early onset cSCCs that frequently metastasize. The results indicate that different processes are associated with formation of RDEB cSCCs compared to sporadic cSCCs. Sporadic cSCCs show signs of UV damage, whereas RDEB cSCCs have higher mutational rates and display tissue damage, inflammation and subsequent remodeling of the dermal ECM as tumor initiating factors. Interestingly the two high-risk groups - high-risk metastasizing sporadic cSCCs and RDEB cSCCs - are both associated with tissue damage and ECM remodeling in gene-ontology enrichment and Search Tool for the Retrieval of Interacting Genes/Proteins analyses. In situ histologic analyses validate these results. The high-risk cSCCs also show signatures of enhanced bacterial challenge. Histologic analyses confirm correlation of bacterial colonization with worse prognosis. Collectively, this unbiased study - performed directly on human patient material - reveals that common microenvironmental alterations linked to ECM remodeling and increased bacterial challenges are denominators of high-risk cSCCs. The proteins identified here could serve as potential diagnostic markers and therapeutic targets in high-risk cSCCs.


Assuntos
Carcinoma de Células Escamosas/microbiologia , Carcinoma de Células Escamosas/patologia , Epidermólise Bolhosa Distrófica/metabolismo , Matriz Extracelular/metabolismo , Proteômica/métodos , Neoplasias Cutâneas/microbiologia , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Bactérias/metabolismo , Carcinoma de Células Escamosas/metabolismo , Progressão da Doença , Epidermólise Bolhosa Distrófica/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Metástase Neoplásica , Neoplasias Cutâneas/metabolismo , Microambiente Tumoral , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA