Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Front Oncol ; 12: 964716, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601480

RESUMO

The identification of new tumor biomarkers for patient stratification before therapy, for monitoring of disease progression, and for characterization of tumor biology plays a crucial role in cancer research. The status of these biomarkers is mostly scored manually by a pathologist and such scores typically, do not consider the spatial heterogeneity of the protein's expression in the tissue. Using advanced image analysis methods, marker expression can be determined quantitatively with high accuracy and reproducibility on a per-cell level. To aggregate such per-cell marker expressions on a patient level, the expression values for single cells are usually averaged for the whole tissue. However, averaging neglects the spatial heterogeneity of the marker expression in the tissue. We present two novel approaches for quantitative scoring of spatial marker expression heterogeneity. The first approach is based on a co-occurrence analysis of the marker expression in neighboring cells. The second approach accounts for the local variability of the protein's expression by tiling the tissue with a regular grid and assigning local spatial heterogeneity phenotypes per tile. We apply our novel scores to quantify the spatial expression of four different membrane markers, i.e., HER2, CMET, CD44, and EGFR in immunohistochemically (IHC) stained tissue sections of colorectal cancer patients. We evaluate the prognostic relevance of our spatial scores in this cohort and show that the spatial heterogeneity scores clearly outperform the marker expression average as a prognostic factor (CMET: p-value=0.01 vs. p-value=0.3).

2.
Front Oncol ; 11: 552331, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791196

RESUMO

Cancer immunotherapy has led to significant therapeutic progress in the treatment of metastatic and formerly untreatable tumors. However, drug response rates are variable and often only a subgroup of patients will show durable response to a treatment. Biomarkers that help to select those patients that will benefit the most from immunotherapy are thus of crucial importance. Here, we aim to identify such biomarkers by investigating the tumor microenvironment, i.e., the interplay between different cell types like immune cells, stromal cells and malignant cells within the tumor and developed a computational method that determines spatial tumor infiltration phenotypes. Our method is based on spatial point pattern analysis of immunohistochemically stained colorectal cancer tumor tissue and accounts for the intra-tumor heterogeneity of immune infiltration. We show that, compared to base-line models, tumor infiltration phenotypes provide significant additional support for the prediction of established biomarkers in a colorectal cancer patient cohort (n = 80). Integration of tumor infiltration phenotypes with genetic and genomic data from the same patients furthermore revealed significant associations between spatial infiltration patterns and common mutations in colorectal cancer and gene expression signatures. Based on these associations, we computed novel gene signatures that allow one to predict spatial tumor infiltration patterns from gene expression data only and validated this approach in a separate dataset from the Cancer Genome Atlas.

3.
Front Immunol ; 11: 550250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193316

RESUMO

The development and progression of solid tumors such as colorectal cancer (CRC) are known to be affected by the immune system and cell types such as T cells, natural killer (NK) cells, and natural killer T (NKT) cells are emerging as interesting targets for immunotherapy and clinical biomarker research. In addition, CD3+ and CD8+ T cell distribution in tumors has shown positive prognostic value in stage I-III CRC. Recent developments in digital computational pathology support not only classical cell density based tumor characterization, but also a more comprehensive analysis of the spatial cell organization in the tumor immune microenvironment (TiME). Leveraging that methodology in the current study, we tried to address the question of how the distribution of myeloid derived suppressor cells in TiME of primary CRC affects the function and location of cytotoxic T cells. We applied multicolored immunohistochemistry to identify monocytic (CD11b+CD14+) and granulocytic (CD11b+CD15+) myeloid cell populations together with proliferating and non-proliferating cytotoxic T cells (CD8+Ki67+/-). Through automated object detection and image registration using HALO software (IndicaLabs), we applied dedicated spatial statistics to measure the extent of overlap between the areas occupied by myeloid and T cells. With this approach, we observed distinct spatial organizational patterns of immune cells in tumors obtained from 74 treatment-naive CRC patients. Detailed analysis of inter-cell distances and myeloid-T cell spatial overlap combined with integrated gene expression data allowed to stratify patients irrespective of their mismatch repair (MMR) status or consensus molecular subgroups (CMS) classification. In addition, generation of cell distance-derived gene signatures and their mapping to the TCGA data set revealed associations between spatial immune cell distribution in TiME and certain subsets of CD8+ and CD4+ T cells. The presented study sheds a new light on myeloid and T cell interactions in TiME in CRC patients. Our results show that CRC tumors present distinct distribution patterns of not only T effector cells but also tumor resident myeloid cells, thus stressing the necessity of more comprehensive characterization of TiME in order to better predict cancer prognosis. This research emphasizes the importance of a multimodal approach by combining computational pathology with its detailed spatial statistics and gene expression profiling. Finally, our study presents a novel approach to cancer patients' characterization that can potentially be used to develop new immunotherapy strategies, not based on classical biomarkers related to CRC biology.


Assuntos
Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Neoplasias Colorretais/patologia , Neoplasias Colorretais/cirurgia , Biologia Computacional/métodos , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Imuno-Histoquímica , Imunomodulação , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
4.
Cancer Res ; 80(5): 1199-1209, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31874858

RESUMO

Despite the advent of immunotherapy, metastatic melanoma represents an aggressive tumor type with a poor survival outcome. The successful application of immunotherapy requires in-depth understanding of the biological basis and immunosuppressive mechanisms within the tumor microenvironment. In this study, we conducted spatially explicit analyses of the stromal-immune interface across 400 melanoma hematoxylin and eosin (H&E) specimens from The Cancer Genome Atlas. A computational pathology pipeline (CRImage) was used to classify cells in the H&E specimen into stromal, immune, or cancer cells. The estimated proportions of these cell types were validated by independent measures of tumor purity, pathologists' estimate of lymphocyte density, imputed immune cell subtypes, and pathway analyses. Spatial interactions between these cell types were computed using a graph-based algorithm (topological tumor graphs, TTG). This approach identified two stromal features, namely stromal clustering and stromal barrier, which represented the melanoma stromal microenvironment. Tumors with increased stromal clustering and barrier were associated with reduced intratumoral lymphocyte distribution and poor overall survival independent of existing prognostic factors. To explore the genomic basis of these TTG-derived stromal phenotypes, we used a deep learning approach integrating genomic (copy number) and transcriptomic data, thereby inferring a compressed representation of copy number-driven alterations in gene expression. This integrative analysis revealed that tumors with high stromal clustering and barrier had reduced expression of pathways involved in naïve CD4 signaling, MAPK, and PI3K signaling. Taken together, our findings support the immunosuppressive role of stromal cells and T-cell exclusion within the vicinity of melanoma cells. SIGNIFICANCE: Computational histology-based stromal phenotypes within the tumor microenvironment are significantly associated with prognosis and immune exclusion in melanoma.


Assuntos
Melanoma/imunologia , Modelos Biológicos , Neoplasias Cutâneas/imunologia , Células Estromais/imunologia , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biópsia , Estudos de Coortes , Variações do Número de Cópias de DNA , Aprendizado Profundo , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/imunologia , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Interpretação de Imagem Assistida por Computador , Estimativa de Kaplan-Meier , Linfócitos do Interstício Tumoral/imunologia , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/mortalidade , Pessoa de Meia-Idade , Prognóstico , RNA-Seq , Pele/citologia , Pele/imunologia , Pele/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/mortalidade , Análise Espacial , Células Estromais/patologia , Linfócitos T/imunologia , Evasão Tumoral/genética , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética
5.
Front Oncol ; 9: 1045, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681583

RESUMO

Computational pathology-based cell classification algorithms are revolutionizing the study of the tumor microenvironment and can provide novel predictive/prognosis biomarkers crucial for the delivery of precision oncology. Current algorithms used on hematoxylin and eosin slides are based on individual cell nuclei morphology with limited local context features. Here, we propose a novel multi-resolution hierarchical framework (SuperCRF) inspired by the way pathologists perceive regional tissue architecture to improve cell classification and demonstrate its clinical applications. We develop SuperCRF by training a state-of-art deep learning spatially constrained- convolution neural network (SC-CNN) to detect and classify cells from 105 high-resolution (20×) H&E-stained slides of The Cancer Genome Atlas melanoma dataset and subsequently, a conditional random field (CRF) by combining cellular neighborhood with tumor regional classification from lower resolution images (5, 1.25×) given by a superpixel-based machine learning framework. SuperCRF led to an 11.85% overall improvement in the accuracy of the state-of-art deep learning SC-CNN cell classifier. Consistent with a stroma-mediated immune suppressive microenvironment, SuperCRF demonstrated that (i) a high ratio of lymphocytes to all lymphocytes within the stromal compartment (p = 0.026) and (ii) a high ratio of stromal cells to all cells (p < 0.0001 compared to p = 0.039 for SC-CNN only) are associated with poor survival in patients with melanoma. SuperCRF improves cell classification by introducing global and local context-based information and can be implemented in combination with any single-cell classifier. SuperCRF provides valuable tools to study the tumor microenvironment and identify predictors of survival and response to therapy.

6.
Bioinformatics ; 35(13): 2291-2299, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452534

RESUMO

MOTIVATION: Recent imaging technologies allow for high-throughput tracking of cells as they migrate, divide, express fluorescent markers and change their morphology. The interpretation of these data requires unbiased, efficient statistical methods that model the dynamics of cell phenotypes. RESULTS: We introduce treeHFM, a probabilistic model which generalizes the theory of hidden Markov models to tree structured data. While accounting for the entire genealogy of a cell, treeHFM categorizes cells according to their primary phenotypic features. It models all relevant events in a cell's life, including cell division, and thereby enables the analysis of event order and cell fate heterogeneity. Simulations show higher accuracy in predicting correct state labels when modeling the more complex, tree-shaped dependency of samples over standard HMM modeling. Applying treeHFM to time lapse images of hematopoietic progenitor cell differentiation, we demonstrate that progenitor cells undergo a well-ordered sequence of differentiation events. AVAILABILITY AND IMPLEMENTATION: The treeHFM is implemented in C++. We provide wrapper functions for the programming languages R (CRAN package, https://CRAN.R-project.org/package=treeHFM) and Matlab (available at Mathworks Central, http://se.mathworks.com/matlabcentral/fileexchange/57575-treehfml). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Imagem com Lapso de Tempo , Análise por Conglomerados , Modelos Estatísticos , Linguagens de Programação , Software
7.
Cell ; 173(7): 1755-1769.e22, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29754820

RESUMO

High-grade serous ovarian cancer (HGSC) exhibits extensive malignant clonal diversity with widespread but non-random patterns of disease dissemination. We investigated whether local immune microenvironment factors shape tumor progression properties at the interface of tumor-infiltrating lymphocytes (TILs) and cancer cells. Through multi-region study of 212 samples from 38 patients with whole-genome sequencing, immunohistochemistry, histologic image analysis, gene expression profiling, and T and B cell receptor sequencing, we identified three immunologic subtypes across samples and extensive within-patient diversity. Epithelial CD8+ TILs negatively associated with malignant diversity, reflecting immunological pruning of tumor clones inferred by neoantigen depletion, HLA I loss of heterozygosity, and spatial tracking between T cell and tumor clones. In addition, combinatorial prognostic effects of mutational processes and immune properties were observed, illuminating how specific genomic aberration types associate with immune response and impact survival. We conclude that within-patient spatial immune microenvironment variation shapes intraperitoneal malignant spread, provoking new evolutionary perspectives on HGSC clonal dispersion.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Neoplasias Ovarianas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Antígenos CD8/metabolismo , Análise por Conglomerados , Feminino , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , Perda de Heterozigosidade , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/metabolismo , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias Ovarianas/classificação , Neoplasias Ovarianas/imunologia , Polimorfismo de Nucleotídeo Único , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Sequenciamento Completo do Genoma , Adulto Jovem
8.
Sci Rep ; 6: 37462, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27892478

RESUMO

Functionally distinct plasmacytoid and conventional dendritic cells (pDC and cDC) shape innate and adaptive immunity. They are derived from common dendritic cell progenitors (CDPs) in the murine bone marrow, which give rise to CD11c+ MHCII- precursors with early commitment to DC subpopulations. In this study, we dissect pDC development from CDP into an ordered sequence of differentiation events by monitoring the expression of CD11c, MHC class II, Siglec H and CCR9 in CDP cultures by continuous single cell imaging and tracking. Analysis of CDP genealogies revealed a stepwise differentiation of CDPs into pDCs in a part of the CDP colonies. This developmental pathway involved an early CD11c+ SiglecH- pre-DC stage and a Siglec H+ CCR9low precursor stage, which was followed rapidly by upregulation of CCR9 indicating final pDC differentiation. In the majority of the remaining CDP pedigrees however the Siglec H+ CCR9low precursor state was maintained for several generations. Thus, although a fraction of CDPs transits through precursor stages rapidly to give rise to a first wave of pDCs, the majority of CDP progeny differentiate more slowly and give rise to longer lived precursor cells which are poised to differentiate on demand.


Assuntos
Células da Medula Óssea/citologia , Linhagem da Célula/imunologia , Células Dendríticas/citologia , Análise de Célula Única/métodos , Células-Tronco/citologia , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Antígeno CD11c/genética , Antígeno CD11c/imunologia , Diferenciação Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Fêmur/citologia , Fêmur/imunologia , Fêmur/metabolismo , Citometria de Fluxo , Expressão Gênica , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Imunofenotipagem , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Receptores CCR/genética , Receptores CCR/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Células-Tronco/imunologia , Células-Tronco/metabolismo , Tíbia/citologia , Tíbia/imunologia , Tíbia/metabolismo
9.
Sci Transl Med ; 4(157): 157ra143, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23100629

RESUMO

Solid tumors are heterogeneous tissues composed of a mixture of cancer and normal cells, which complicates the interpretation of their molecular profiles. Furthermore, tissue architecture is generally not reflected in molecular assays, rendering this rich information underused. To address these challenges, we developed a computational approach based on standard hematoxylin and eosin-stained tissue sections and demonstrated its power in a discovery and validation cohort of 323 and 241 breast tumors, respectively. To deconvolute cellular heterogeneity and detect subtle genomic aberrations, we introduced an algorithm based on tumor cellularity to increase the comparability of copy number profiles between samples. We next devised a predictor for survival in estrogen receptor-negative breast cancer that integrated both image-based and gene expression analyses and significantly outperformed classifiers that use single data types, such as microarray expression signatures. Image processing also allowed us to describe and validate an independent prognostic factor based on quantitative analysis of spatial patterns between stromal cells, which are not detectable by molecular assays. Our quantitative, image-based method could benefit any large-scale cancer study by refining and complementing molecular assays of tumor samples.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Perfilação da Expressão Gênica , Genômica , Processamento de Imagem Assistida por Computador , Automação , Neoplasias da Mama/diagnóstico , Feminino , Dosagem de Genes/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Linfócitos do Interstício Tumoral/patologia , Prognóstico , Receptores de Estrogênio/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA