Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(30): eadi0286, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37506203

RESUMO

Polypyrimidine tract binding protein 1 (PTBP1) is thought to be expressed only at embryonic stages in central neurons. Its down-regulation triggers neuronal differentiation in precursor and non-neuronal cells, an approach recently tested for generation of neurons de novo for amelioration of neurodegenerative disorders. Moreover, PTBP1 is replaced by its paralog PTBP2 in mature central neurons. Unexpectedly, we found that both proteins are coexpressed in adult sensory and motor neurons, with PTBP2 restricted mainly to the nucleus, while PTBP1 also shows axonal localization. Levels of axonal PTBP1 increased markedly after peripheral nerve injury, and it associates in axons with mRNAs involved in injury responses and nerve regeneration, including importin ß1 (KPNB1) and RHOA. Perturbation of PTBP1 affects local translation in axons, nociceptor neuron regeneration and both thermal and mechanical sensation. Thus, PTBP1 has functional roles in adult axons. Hence, caution is required before considering targeting of PTBP1 for therapeutic purposes.


Assuntos
Axônios , Regeneração Nervosa , Neurônios , Traumatismos dos Nervos Periféricos , Adulto , Humanos , Axônios/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Interneurônios/metabolismo , Regeneração Nervosa/genética , Neurônios/metabolismo , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo
2.
J Cell Sci ; 136(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36218033

RESUMO

Size homeostasis is a fundamental process in biology and is particularly important for large cells such as neurons. We previously proposed a motor-dependent length-sensing mechanism wherein reductions in microtubule motor levels would be expected to accelerate neuronal growth, and validated this prediction in dynein heavy chain 1 Loa mutant (Dync1h1Loa) sensory neurons. Here, we describe a new mouse model with a conditional deletion allele of exons 24 and 25 in Dync1h1. Homozygous Islet1-Cre-mediated deletion of Dync1h1 (Isl1-Dync1h1-/-), which deletes protein from the motor and sensory neurons, is embryonic lethal, but heterozygous animals (Isl1-Dync1h1+/-) survive to adulthood with ∼50% dynein expression in targeted cells. Isl1-Dync1h1+/- sensory neurons reveal accelerated growth, as previously reported in Dync1h1Loa neurons. Moreover, Isl1-Dync1h1+/- mice show mild impairments in gait, proprioception and tactile sensation, similar to what is seen in Dync1h1Loa mice, confirming that specific aspects of the Loa phenotype are due to reduced dynein levels. Isl1-Dync1h1+/- mice also show delayed recovery from peripheral nerve injury, likely due to reduced injury signal delivery from axonal lesion sites. Thus, conditional deletion of Dync1h1 exons 24 and 25 enables targeted studies of the role of dynein in neuronal growth.


Assuntos
Dineínas do Citoplasma , Dineínas , Camundongos , Animais , Dineínas/genética , Dineínas/metabolismo , Dineínas do Citoplasma/genética , Dineínas do Citoplasma/metabolismo , Alelos , Mutação , Células Receptoras Sensoriais/metabolismo
3.
EMBO J ; 40(20): e107158, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34515347

RESUMO

Nucleolin is a multifunctional RNA Binding Protein (RBP) with diverse subcellular localizations, including the nucleolus in all eukaryotic cells, the plasma membrane in tumor cells, and the axon in neurons. Here we show that the glycine arginine rich (GAR) domain of nucleolin drives subcellular localization via protein-protein interactions with a kinesin light chain. In addition, GAR sequences mediate plasma membrane interactions of nucleolin. Both these modalities are in addition to the already reported involvement of the GAR domain in liquid-liquid phase separation in the nucleolus. Nucleolin transport to axons requires the GAR domain, and heterozygous GAR deletion mice reveal reduced axonal localization of nucleolin cargo mRNAs and enhanced sensory neuron growth. Thus, the GAR domain governs axonal transport of a growth controlling RNA-RBP complex in neurons, and is a versatile localization determinant for different subcellular compartments. Localization determination by GAR domains may explain why GAR mutants in diverse RBPs are associated with neurodegenerative disease.


Assuntos
Nucléolo Celular/metabolismo , Gânglios Espinais/metabolismo , Cinesinas/metabolismo , Neurônios/metabolismo , Fosfoproteínas/química , Proteínas de Ligação a RNA/química , Nervo Isquiático/metabolismo , Sequência de Aminoácidos , Animais , Transporte Axonal/genética , Linhagem Celular Tumoral , Nucléolo Celular/ultraestrutura , Gânglios Espinais/citologia , Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Cinesinas/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação , Neurônios/citologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Cultura Primária de Células , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Nervo Isquiático/citologia , Nucleolina
4.
Cell Rep Med ; 2(5): 100281, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34095883

RESUMO

Anxiety and stress-related conditions represent a significant health burden in modern society. Unfortunately, most anxiolytic drugs are prone to side effects, limiting their long-term usage. Here, we employ a bioinformatics screen to identify drugs for repurposing as anxiolytics. Comparison of drug-induced gene-expression profiles with the hippocampal transcriptome of an importin α5 mutant mouse model with reduced anxiety identifies the hypocholesterolemic agent ß-sitosterol as a promising candidate. ß-sitosterol activity is validated by both intraperitoneal and oral application in mice, revealing it as the only clear anxiolytic from five closely related phytosterols. ß-sitosterol injection reduces the effects of restraint stress, contextual fear memory, and c-Fos activation in the prefrontal cortex and dentate gyrus. Moreover, synergistic anxiolysis is observed when combining sub-efficacious doses of ß-sitosterol with the SSRI fluoxetine. These preclinical findings support further development of ß-sitosterol, either as a standalone anxiolytic or in combination with low-dose SSRIs.


Assuntos
Ansiolíticos/farmacologia , Transtornos de Ansiedade/tratamento farmacológico , Ansiedade/tratamento farmacológico , Sitosteroides/farmacologia , Animais , Medo/efeitos dos fármacos , Fluoxetina/farmacologia , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Preparações Farmacêuticas/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Tranquilizantes/farmacologia
5.
Science ; 369(6505): 842-846, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32792398

RESUMO

How is neuropathic pain regulated in peripheral sensory neurons? Importins are key regulators of nucleocytoplasmic transport. In this study, we found that importin α3 (also known as karyopherin subunit alpha 4) can control pain responsiveness in peripheral sensory neurons in mice. Importin α3 knockout or sensory neuron-specific knockdown in mice reduced responsiveness to diverse noxious stimuli and increased tolerance to neuropathic pain. Importin α3-bound c-Fos and importin α3-deficient neurons were impaired in c-Fos nuclear import. Knockdown or dominant-negative inhibition of c-Fos or c-Jun in sensory neurons reduced neuropathic pain. In silico screens identified drugs that mimic importin α3 deficiency. These drugs attenuated neuropathic pain and reduced c-Fos nuclear localization. Thus, perturbing c-Fos nuclear import by importin α3 in peripheral neurons can promote analgesia.


Assuntos
Dor Crônica/fisiopatologia , Neuralgia/fisiopatologia , Células Receptoras Sensoriais/fisiologia , alfa Carioferinas/fisiologia , Transporte Ativo do Núcleo Celular , Animais , Benzofenonas/farmacologia , Dor Crônica/genética , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Isoxazóis/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/genética , Proteínas Proto-Oncogênicas c-fos/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fator de Transcrição AP-1/metabolismo , alfa Carioferinas/genética
6.
Neurobiol Dis ; 140: 104816, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32088381

RESUMO

The cytoplasmic dynein motor complex transports essential signals and organelles from the cell periphery to the perinuclear region, hence is critical for the survival and function of highly polarized cells such as neurons. Dynein Light Chain Roadblock-Type 1 (DYNLRB1) is thought to be an accessory subunit required for specific cargos, but here we show that it is essential for general dynein-mediated transport and sensory neuron survival. Homozygous Dynlrb1 null mice are not viable and die during early embryonic development. Furthermore, heterozygous or adult knockdown animals display reduced neuronal growth, and selective depletion of Dynlrb1 in proprioceptive neurons compromises their survival. Conditional depletion of Dynlrb1 in sensory neurons causes deficits in several signaling pathways, including ß-catenin subcellular localization, and a severe impairment in the axonal transport of both lysosomes and retrograde signaling endosomes. Hence, DYNLRB1 is an essential component of the dynein complex, and given dynein's critical functions in neuronal physiology, DYNLRB1 could have a prominent role in the etiology of human neurodegenerative diseases.


Assuntos
Transporte Axonal/fisiologia , Dineínas/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Proteínas de Transporte/metabolismo , Sobrevivência Celular , Células Cultivadas , Dineínas/genética , Lisossomos/metabolismo , Masculino , Camundongos , Neurogênese , Organelas/metabolismo , Transfecção
7.
Nat Cell Biol ; 20(3): 307-319, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29434374

RESUMO

Reactive oxygen species (ROS) contribute to tissue damage and remodelling mediated by the inflammatory response after injury. Here we show that ROS, which promote axonal dieback and degeneration after injury, are also required for axonal regeneration and functional recovery after spinal injury. We find that ROS production in the injured sciatic nerve and dorsal root ganglia requires CX3CR1-dependent recruitment of inflammatory cells. Next, exosomes containing functional NADPH oxidase 2 complexes are released from macrophages and incorporated into injured axons via endocytosis. Once in axonal endosomes, active NOX2 is retrogradely transported to the cell body through an importin-ß1-dynein-dependent mechanism. Endosomal NOX2 oxidizes PTEN, which leads to its inactivation, thus stimulating PI3K-phosporylated (p-)Akt signalling and regenerative outgrowth. Challenging the view that ROS are exclusively involved in nerve degeneration, we propose a previously unrecognized role of ROS in mammalian axonal regeneration through a NOX2-PI3K-p-Akt signalling pathway.


Assuntos
Axônios/enzimologia , Exossomos/enzimologia , Gânglios Espinais/enzimologia , NADPH Oxidase 2/metabolismo , Degeneração Neural , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Nervo Isquiático/enzimologia , Traumatismos da Medula Espinal/enzimologia , Animais , Axônios/patologia , Receptor 1 de Quimiocina CX3C/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Dineínas/metabolismo , Endocitose , Endossomos/enzimologia , Endossomos/patologia , Exossomos/patologia , Gânglios Espinais/lesões , Gânglios Espinais/patologia , Macrófagos/enzimologia , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 2/deficiência , NADPH Oxidase 2/genética , Proteínas Nucleares/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Nervo Isquiático/lesões , Nervo Isquiático/patologia , Nervo Isquiático/fisiopatologia , Transdução de Sinais , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , beta Carioferinas
8.
Neuron ; 89(5): 956-70, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26898779

RESUMO

The regenerative capacity of the injured CNS in adult mammals is severely limited, yet axons in the peripheral nervous system (PNS) regrow, albeit to a limited extent, after injury. We reasoned that coordinate regulation of gene expression in injured neurons involving multiple pathways was central to PNS regenerative capacity. To provide a framework for revealing pathways involved in PNS axon regrowth after injury, we applied a comprehensive systems biology approach, starting with gene expression profiling of dorsal root ganglia (DRGs) combined with multi-level bioinformatic analyses and experimental validation of network predictions. We used this rubric to identify a drug that accelerates DRG neurite outgrowth in vitro and optic nerve outgrowth in vivo by inducing elements of the identified network. The work provides a functional genomics foundation for understanding neural repair and proof of the power of such approaches in tackling complex problems in nervous system biology.


Assuntos
Axônios/fisiologia , Gânglios Espinais/citologia , Regeneração Nervosa/fisiologia , Neurônios/citologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Animais , Animais Recém-Nascidos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante) , Canais Iônicos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos , Regeneração Nervosa/genética , Transferases de Grupos Nitrogenados/genética , Transferases de Grupos Nitrogenados/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
9.
Trends Cell Biol ; 23(7): 305-10, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23511112

RESUMO

Neurons exhibit great size differences, and must coordinate biosynthesis rates in cell bodies with the growth needs of different lengths of axons. Classically, axon growth has been viewed mainly as a consequence of extrinsic influences. However, recent publications have proposed at least two different intrinsic axon growth-control mechanisms. We suggest that these mechanisms form part of a continuum of axon growth-control mechanisms, wherein initial growth rates are pre-programmed by transcription factor levels, and subsequent elongating growth is dependent on feedback from intrinsic length-sensing enabled by bidirectional motor-dependent oscillating signals. This model might explain intrinsic limits on elongating neuronal growth and provides a mechanistic framework for determining the connections between genome expression and cellular growth rates in neurons.


Assuntos
Proliferação de Células , Tamanho Celular , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Animais , Axônios/fisiologia , Subunidade alfa 3 de Fator de Ligação ao Core/fisiologia , Dineínas/fisiologia , Humanos , Cinesinas/fisiologia , Modelos Neurológicos , Neuritos/fisiologia , Neurônios/citologia
11.
Dev Neurobiol ; 73(3): 247-56, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23055261

RESUMO

Automated analyses of neuronal morphology are important for quantifying connectivity and circuitry in vivo, as well as in high content imaging of primary neuron cultures. The currently available tools for quantification of neuronal morphology either are highly expensive commercial packages or cannot provide automated image quantifications at single cell resolution. Here, we describe a new software package called WIS-NeuroMath, which fills this gap and provides solutions for automated measurement of neuronal processes in both in vivo and in vitro preparations. Diverse image types can be analyzed without any preprocessing, enabling automated and accurate detection of neurites followed by their quantification in a number of application modules. A cell morphology module detects cell bodies and attached neurites, providing information on neurite length, number of branches, cell body area, and other parameters for each cell. A neurite length module provides a solution for images lacking cell bodies, such as tissue sections. Finally, a ganglion explant module quantifies outgrowth by identifying neurites at different distances from the ganglion. Quantification of a diverse series of preparations with WIS-NeuroMath provided data that were well matched with parallel analyses of the same preparations in established software packages such as MetaXpress or NeuronJ. The capabilities of WIS-NeuroMath are demonstrated in a range of applications, including in dissociated and explant cultures and histological analyses on thin and whole-mount sections. WIS-NeuroMath is freely available to academic users, providing a versatile and cost-effective range of solutions for quantifying neurite growth, branching, regeneration, or degeneration under different experimental paradigms.


Assuntos
Algoritmos , Ensaios de Triagem em Larga Escala , Processamento de Imagem Assistida por Computador/métodos , Neurônios/ultraestrutura , Software , Animais , Automação , Humanos
12.
J Biol Chem ; 287(35): 29285-9, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22782892

RESUMO

The TrkA receptor tyrosine kinase induces death in medulloblastoma cells via an interaction with the cerebral cavernous malformation 2 (CCM2) protein. We used affinity proteomics to identify the germinal center kinase class III (GCKIII) kinases STK24 and STK25 as novel CCM2 interactors. Down-modulation of STK25, but not STK24, rescued medulloblastoma cells from NGF-induced TrkA-dependent cell death, suggesting that STK25 is part of the death-signaling pathway initiated by TrkA and CCM2. CCM2 can be phosphorylated by STK25, and the kinase activity of STK25 is required for death signaling. Finally, STK25 expression in tumors is correlated with positive prognosis in neuroblastoma patients. These findings delineate a death-signaling pathway downstream of neurotrophic receptor tyrosine kinases that may provide targets for therapeutic intervention in pediatric tumors of neural origin.


Assuntos
Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Meduloblastoma/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptor trkA/metabolismo , Transdução de Sinais , Adolescente , Animais , Proteínas de Transporte/genética , Morte Celular , Linhagem Celular Tumoral , Criança , Pré-Escolar , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteômica , Receptor trkA/genética
13.
Cell Rep ; 1(6): 608-16, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22773964

RESUMO

Size homeostasis is fundamental in cell biology, but it is not clear how large cells such as neurons can assess their own size or length. We examined a role for molecular motors in intracellular length sensing.Computational simulations suggest that spatial information can be encoded by the frequency of an oscillating retrograde signal arising from a composite negative feedback loop between bidirectional motor-dependent signals. The model predicts that decreasing either or both anterograde or retrograde signals should increase cell length, and this prediction was confirmed upon application of siRNAs for specific kinesin and/or dynein heavy chains in adult sensory neurons. Heterozygous dynein heavy chain 1 mutant sensory neurons also exhibited increased lengths both in vitro and during embryonic development.Moreover, similar length increases were observed in mouse embryonic fibroblasts upon partial downregulation of dynein heavy chain 1.Thus, molecular motors critically influence cell length sensing and growth control.


Assuntos
Tamanho Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteínas Motores Moleculares/metabolismo , Animais , Transporte Biológico , Simulação por Computador , Citoesqueleto/metabolismo , Regulação para Baixo , Dineínas/ultraestrutura , Citometria de Fluxo , Heterozigoto , Cinesinas/metabolismo , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Modelos Biológicos , Mutação/genética , Células NIH 3T3 , Neuritos/metabolismo , RNA Interferente Pequeno/metabolismo , Nervo Isquiático/citologia , Nervo Isquiático/ultraestrutura , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo
14.
PLoS One ; 7(3): e33786, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22442722

RESUMO

BACKGROUND: Necdin, a MAGE family protein expressed primarily in the nervous system, has been shown to interact with both nuclear and cytoplasmic proteins, but the mechanism of its nucleocytoplasmic transport are unknown. METHODOLOGY/PRINCIPAL FINDINGS: We carried out a large-scale interaction screen using necdin as a bait in the yeast RRS system, and found a wide range of potential interactors with different subcellular localizations, including over 60 new candidates for direct binding to necdin. Integration of these interactions into a comprehensive network revealed a number of coherent interaction modules, including a cytoplasmic module connecting to necdin through huntingtin-associated protein 1 (Hap1), dynactin and hip-1 protein interactor (Hippi); a nuclear P53 and Creb-binding-protein (Crebbp) module, connecting through Crebbp and WW domain-containing transcription regulator protein 1 (Wwtr1); and a nucleocytoplasmic transport module, connecting through transportins 1 and 2. We validated the necdin-transportin1 interaction and characterized a sequence motif in necdin that modulates karyopherin interaction. Surprisingly, a D234P necdin mutant showed enhanced binding to both transportin1 and importin ß1. Finally, exclusion of necdin from the nucleus triggered extensive cell death. CONCLUSIONS/SIGNIFICANCE: These data suggest that necdin has multiple roles within protein complexes in different subcellular compartments, and indicate that it can utilize multiple karyopherin-dependent pathways to modulate its localization.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Motivos de Aminoácidos , Animais , Núcleo Celular/genética , Citoplasma/genética , Células HEK293 , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Células PC12 , Ligação Proteica/fisiologia , Ratos
15.
EMBO J ; 31(6): 1350-63, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22246183

RESUMO

Retrograde axonal injury signalling stimulates cell body responses in lesioned peripheral neurons. The involvement of importins in retrograde transport suggests that transcription factors (TFs) might be directly involved in axonal injury signalling. Here, we show that multiple TFs are found in axons and associate with dynein in axoplasm from injured nerve. Biochemical and functional validation for one TF family establishes that axonal STAT3 is locally translated and activated upon injury, and is transported retrogradely with dynein and importin α5 to modulate survival of peripheral sensory neurons after injury. Hence, retrograde transport of TFs from axonal lesion sites provides a direct link between axon and nucleus.


Assuntos
Axônios/metabolismo , Gânglios Espinais/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/metabolismo , Animais , Transporte Axonal/fisiologia , Núcleo Celular/metabolismo , Dineínas/metabolismo , Carioferinas/metabolismo , Masculino , Camundongos , Transporte Proteico/fisiologia , Ratos , Ratos Wistar , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia
16.
Dev Neurobiol ; 70(5): 298-303, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20186708

RESUMO

The trk family of receptor tyrosine kinases supports survival and differentiation in the nervous system. Paradoxically it has also been shown that members of the trk family can induce cell death in pediatric tumor cells of neuronal origin. Moreover, TrkA and TrkC serve as good prognostic indicators in neuroblastoma and medulloblatoma, respectively. Although the possible linkage between these observations was intriguing, until recently there was limited insight on the mechanisms involved. Recent findings suggest that TrkA might influence neuronal cell death through stimulation of p75 cleavage. An alternative p75-independent mechanism was suggested by a newly discovered interaction between TrkA and CCM2 (the protein product of the gene cerebral cavernous malformation 2). Coexpression of CCM2 with TrkA induces cell death in medulloblastoma and neuroblastoma cells, and CCM2 expression levels correlate with those of TrkA and with good prognosis in neuroblastoma patients. Thus, mechanistic clues to the enigma of trk-induced cell death have begun to emerge. Detailed elucidation of these mechanisms and their in vivo physiological significance will be of keen interest for future research.


Assuntos
Morte Celular/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Humanos , Modelos Biológicos , Neoplasias Neuroepiteliomatosas/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo
17.
Mol Cell Proteomics ; 9(5): 976-87, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19955087

RESUMO

Investigations of the molecular mechanisms underlying responses to nerve injury have highlighted the importance of axonal transport systems. To obtain a comprehensive view of the protein ensembles associated with axonal transport in injured axons, we analyzed the protein compositions of axoplasm concentrated at ligatures following crush injury of rat sciatic nerve. LC-MS/MS analyses of iTRAQ-labeled peptides from axoplasm distal and proximal to the ligation sites revealed protein ensembles transported in both anterograde and retrograde directions. Variability of replicates did not allow straightforward assignment of proteins to functional transport categories; hence, we performed principal component analysis and factor analysis with subsequent clustering to determine the most prominent injury-related transported proteins. This strategy circumvented experimental variability and allowed the extraction of biologically meaningful information from the quantitative neuroproteomics experiments. 299 proteins were highlighted by principal component analysis and factor analysis, 145 of which correlate with retrograde and 154 of which correlate with anterograde transport after injury. The analyses reveal extensive changes in both anterograde and retrograde transport proteomes in injured peripheral axons and emphasize the importance of RNA binding and translational machineries in the axonal response to injury.


Assuntos
Transporte Axonal , Biossíntese de Proteínas , Proteômica/métodos , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Animais , Transporte Axonal/genética , Análise por Conglomerados , Bases de Dados de Proteínas , Análise Fatorial , Marcação por Isótopo , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/análise , Análise de Componente Principal , Processamento de Proteína Pós-Traducional , Ratos , Ratos Wistar , Estatística como Assunto
18.
Neuron ; 63(5): 585-91, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19755102

RESUMO

The TrkA receptor tyrosine kinase is crucial for differentiation and survival of nerve-growth-factor-dependent neurons. Paradoxically, TrkA also induces cell death in pediatric tumor cells of neural origin, via an unknown mechanism. Here, we show that CCM2, a gene product associated with cerebral cavernous malformations, interacts with the juxtamembrane region of TrkA via its phosphotyrosine binding (PTB) domain and mediates TrkA-induced death in diverse cell types. Both the PTB and Karet domains of CCM2 are required for TrkA-dependent cell death, such that the PTB domain determines the specificity of the interaction, and the Karet domain links to death pathways. Downregulation of CCM2 in medulloblastoma or neuroblastoma cells attenuates TrkA-dependent death. Combined high expression levels of CCM2 and TrkA are correlated with long-term survival in a large cohort of human neuroblastoma patients. Thus, CCM2 is a key mediator of TrkA-dependent cell death in pediatric neuroblastic tumors.


Assuntos
Apoptose/fisiologia , Proteínas de Transporte/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neuroblastoma/fisiopatologia , Receptor trkA/metabolismo , Animais , Proteínas de Transporte/genética , Morte Celular/fisiologia , Linhagem Celular , Células Cultivadas , Humanos , Meduloblastoma/fisiopatologia , Camundongos , Proteínas dos Microfilamentos/genética , Mutação , Neuroblastoma/diagnóstico , Células PC12 , Prognóstico , Ratos , Receptor de Fator de Crescimento Neural/metabolismo , Receptor trkA/genética , Receptor trkB/genética , Receptor trkB/metabolismo
19.
PLoS Comput Biol ; 5(8): e1000477, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19696880

RESUMO

Injury to nerve axons induces diverse responses in neuronal cell bodies, some of which are influenced by the distance from the site of injury. This suggests that neurons have the capacity to estimate the distance of the injury site from their cell body. Recent work has shown that the molecular motor dynein transports importin-mediated retrograde signaling complexes from axonal lesion sites to cell bodies, raising the question whether dynein-based mechanisms enable axonal distance estimations in injured neurons? We used computer simulations to examine mechanisms that may provide nerve cells with dynein-dependent distance assessment capabilities. A multiple-signals model was postulated based on the time delay between the arrival of two or more signals produced at the site of injury-a rapid signal carried by action potentials or similar mechanisms and slower signals carried by dynein. The time delay between the arrivals of these two types of signals should reflect the distance traversed, and simulations of this model show that it can indeed provide a basis for distance measurements in the context of nerve injuries. The analyses indicate that the suggested mechanism can allow nerve cells to discriminate between distances differing by 10% or more of their total axon length, and suggest that dynein-based retrograde signaling in neurons can be utilized for this purpose over different scales of nerves and organisms. Moreover, such a mechanism might also function in synapse to nucleus signaling in uninjured neurons. This could potentially allow a neuron to dynamically sense the relative lengths of its processes on an ongoing basis, enabling appropriate metabolic output from cell body to processes.


Assuntos
Dineínas/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Traumatismos dos Nervos Periféricos , Simulação por Computador , Interpretação Estatística de Dados , Bases de Dados Factuais , Transdução de Sinais
20.
Brain Behav Evol ; 68(3): 191-5, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16912472

RESUMO

The mechanisms underlying evolution of complex nervous systems are not well understood. In recent years there have been a number of attempts to correlate specific gene families or evolutionary processes with increased brain complexity in the vertebrate lineage. Candidates for evocation of complexity include genes involved in regulating brain size, such as neurotrophic factors or microcephaly-related genes; or wider evolutionary processes, such as accelerated evolution of brain-expressed genes or enhanced RNA splicing or editing events in primates. An inherent weakness of these studies is that they are correlative by nature, and almost exclusively focused on the mammalian and specifically the primate lineage. Another problem with genomic analyses is that it is difficult to identify functionally similar yet non-homologous molecules such as different families of cysteine-rich neurotrophic factors in different phyla. As long as comprehensive experimental studies of these questions are not feasible, additional perspectives for evolutionary and genomic studies will be very helpful. Cephalopod mollusks represent the most complex nervous systems outside the vertebrate lineage, thus we suggest that genome sequencing of different mollusk models will provide useful insights into the evolution of complex brains.


Assuntos
Evolução Biológica , Encéfalo/anatomia & histologia , Animais , Aplysia/genética , Aplysia/fisiologia , Cefalópodes/anatomia & histologia , Cefalópodes/genética , Genômica , Humanos , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/fisiologia , Neurônios/citologia , Tamanho do Órgão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA