Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(7997): 194-206, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096902

RESUMO

The LINE-1 (L1) retrotransposon is an ancient genetic parasite that has written around one-third of the human genome through a 'copy and paste' mechanism catalysed by its multifunctional enzyme, open reading frame 2 protein (ORF2p)1. ORF2p reverse transcriptase (RT) and endonuclease activities have been implicated in the pathophysiology of cancer2,3, autoimmunity4,5 and ageing6,7, making ORF2p a potential therapeutic target. However, a lack of structural and mechanistic knowledge has hampered efforts to rationally exploit it. We report structures of the human ORF2p 'core' (residues 238-1061, including the RT domain) by X-ray crystallography and cryo-electron microscopy in several conformational states. Our analyses identified two previously undescribed folded domains, extensive contacts to RNA templates and associated adaptations that contribute to unique aspects of the L1 replication cycle. Computed integrative structural models of full-length ORF2p show a dynamic closed-ring conformation that appears to open during retrotransposition. We characterize ORF2p RT inhibition and reveal its underlying structural basis. Imaging and biochemistry show that non-canonical cytosolic ORF2p RT activity can produce RNA:DNA hybrids, activating innate immune signalling through cGAS/STING and resulting in interferon production6-8. In contrast to retroviral RTs, L1 RT is efficiently primed by short RNAs and hairpins, which probably explains cytosolic priming. Other biochemical activities including processivity, DNA-directed polymerization, non-templated base addition and template switching together allow us to propose a revised L1 insertion model. Finally, our evolutionary analysis demonstrates structural conservation between ORF2p and other RNA- and DNA-dependent polymerases. We therefore provide key mechanistic insights into L1 polymerization and insertion, shed light on the evolutionary history of L1 and enable rational drug development targeting L1.


Assuntos
Endonucleases , Elementos Nucleotídeos Longos e Dispersos , DNA Polimerase Dirigida por RNA , Transcrição Reversa , Humanos , Microscopia Crioeletrônica , Endonucleases/química , Endonucleases/genética , Endonucleases/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , RNA/genética , DNA Polimerase Dirigida por RNA/química , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Cristalografia por Raios X , DNA/biossíntese , DNA/genética , Imunidade Inata , Interferons/biossíntese
2.
Cancer Discov ; 13(12): 2532-2547, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698949

RESUMO

Improved biomarkers are needed for early cancer detection, risk stratification, treatment selection, and monitoring treatment response. Although proteins can be useful blood-based biomarkers, many have limited sensitivity or specificity for these applications. Long INterspersed Element-1 (LINE-1) open reading frame 1 protein (ORF1p) is a transposable element protein overexpressed in carcinomas and high-risk precursors during carcinogenesis with negligible expression in normal tissues, suggesting ORF1p could be a highly specific cancer biomarker. To explore ORF1p as a blood-based biomarker, we engineered ultrasensitive digital immunoassays that detect mid-attomolar (10-17 mol/L) ORF1p concentrations in plasma across multiple cancers with high specificity. Plasma ORF1p shows promise for early detection of ovarian cancer, improves diagnostic performance in a multianalyte panel, provides early therapeutic response monitoring in gastroesophageal cancers, and is prognostic for overall survival in gastroesophageal and colorectal cancers. Together, these observations nominate ORF1p as a multicancer biomarker with potential utility for disease detection and monitoring. SIGNIFICANCE: The LINE-1 ORF1p transposon protein is pervasively expressed in many cancers and is a highly specific biomarker of multiple common, lethal carcinomas and their high-risk precursors in tissue and blood. Ultrasensitive ORF1p assays from as little as 25 µL plasma are novel, rapid, cost-effective tools in cancer detection and monitoring. See related commentary by Doucet and Cristofari, p. 2502. This article is featured in Selected Articles from This Issue, p. 2489.


Assuntos
Carcinoma , Neoplasias Ovarianas , Feminino , Humanos , Elementos Nucleotídeos Longos e Dispersos , Proteínas/genética , Biomarcadores Tumorais , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética
3.
J Gerontol A Biol Sci Med Sci ; 78(10): 1740-1752, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37310873

RESUMO

Chronic activation of inflammatory pathways (CI) and mitochondrial dysfunction are independently linked to age-related functional decline and early mortality. Interleukin 6 (IL-6) is among the most consistently elevated chronic activation of inflammatory pathways markers, but whether IL-6 plays a causative role in this mitochondrial dysfunction and physical deterioration remains unclear. To characterize the role of IL-6 in age-related mitochondrial dysregulation and physical decline, we have developed an inducible human IL-6 (hIL-6) knock-in mouse (TetO-hIL-6mitoQC) that also contains a mitochondrial-quality control reporter. Six weeks of hIL-6 induction resulted in upregulation of proinflammatory markers, cell proliferation and metabolic pathways, and dysregulated energy utilization. Decreased grip strength, increased falls off the treadmill, and increased frailty index were also observed. Further characterization of skeletal muscles postinduction revealed an increase in mitophagy, downregulation of mitochondrial biogenesis genes, and an overall decrease in total mitochondrial numbers. This study highlights the contribution of IL-6 to mitochondrial dysregulation and supports a causal role of hIL-6 in physical decline and frailty.


Assuntos
Fragilidade , Interleucina-6 , Camundongos , Humanos , Animais , Interleucina-6/genética , Interleucina-6/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Animais de Doenças , Músculo Esquelético/metabolismo
4.
J Biomed Inform ; 107: 103458, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32445856

RESUMO

Research findings in biomedical science are often summarized in statistical plots and sophisticated data presentations. Such visualizations are challenging for people who lack the appropriate scientific background or even experts who work in other areas. Scientists have to maximize knowledge dissemination by improving the communication of their findings to the public. To address the need for compelling and successful information visualizations in biomedical science, we propose a new theoretical framework for Visual Storytelling and illustrate its potential application through two visual stories, one on vaccine safety and one on cancer immunotherapy. In both examples, we rely on solid data and combine multiple media (photographs, illustrations, choropleth maps, tables, graphs, and charts) with text to create powerful visual stories for the selected target audiences. If fully validated, the proposed theory may shed light into non-traditional techniques for building visual stories and further the agenda of creating compelling information visualizations.


Assuntos
Comunicação , Conhecimento , Humanos , Disseminação de Informação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA