Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Hepatology ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38975812

RESUMO

BACKGROUND AND AIMS: Antimicrobial proteins of the REG3 family provide a first line of protection against infections and transformed cells. Their expression is inducible by inflammation, which makes their role in cancer biology less clear, since an immune- inflammatory context may preexist or coexist with cancer, as occurs in hepatocellular carcinoma (HCC). The aim of this study is to clarify the role of REG3A in liver carcinogenesis and to determine whether carbohydrate-binding functions are involved. APPROACH AND RESULTS: This study provides evidence of the suppressive role of REG3A in HCC by reducing O-GlcNAcylation in two mouse models of HCC, in vitro cell studies, and in clinical samples. REG3A expression in hepatocytes significantly reduces global O- GlcNAcylation and O-GlcNAcylation of c-MYC in preneoplastic and tumor livers and markedly inhibits HCC development in REG3A-c-MYC double transgenic mice and in mice exposed to diethylnitrosamine (DEN). REG3A modifies O-GlcNAcylation without altering the expression or activity of OGT, OGA, or GFAT. Reduced O-GlcNAcylation was consistent with decreased levels of UDP-GlcNAc in pre-cancerous and cancerous livers. This effect is linked to the ability of REG3A to bind Glc and Glc-6P, suggested by a REG3A mutant unable to bind Glc and Glc- 6P and alter O-GlcNAcylation. Importantly, cirrhotic patients with high hepatic REG3A expression had lower levels of O-GlcNAcylation and longer cancer-free survival than REG3A- negative cirrhotic livers. CONCLUSION: REG3A helps fight liver cancer by reducing O-GlcNAcylation. This study suggests a new paradigm for the regulation of O-GlcNAc signalling in cancer-related pathways through interactions with the carbohydrate-binding function of REG3A.

3.
Stem Cells ; 42(4): 301-316, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262709

RESUMO

Somatic cells that have been partially reprogrammed by the factors Oct4, Sox2, Klf4, and cMyc (OSKM) have been demonstrated to be potentially tumorigenic in vitro and in vivo due to the acquisition of cancer-associated genomic alterations and the absence of OSKM clearance over time. In the present study, we obtained partially reprogrammed, SSEA1-negative cells by transducing murine hepatocytes with Δ1Δ3-deleted adenoviruses that expressed the 4 OSKM factors. We observed that, under long-term 2D and 3D culture conditions, hepatocytes could be converted into LGR5-positive cells with self-renewal capacity that was dependent on 3 cross-signaling pathways: IL6/Jak/Stat3, LGR5/R-spondin, and Wnt/ß-catenin. Following engraftment in syngeneic mice, LGR5-positive cells that expressed the cancer markers CD51, CD166, and CD73 were capable of forming invasive and metastatic tumors reminiscent of intrahepatic cholangiocarcinoma (ICC): they were positive for CK19 and CK7, featured associations of cord-like structures, and contained cuboidal and atypical cells with dissimilar degrees of pleomorphism and mitosis. The LGR5+-derived tumors exhibited a highly vascularized stroma with substantial fibrosis. In addition, we identified pro-angiogenic factors and signaling pathways involved in neo-angiogenesis and vascular development, which represent potential new targets for anti-angiogenic strategies to overcome tumor resistance to current ICC treatments.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Animais , Camundongos , Hepatócitos/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Via de Sinalização Wnt/genética
4.
Front Oncol ; 13: 1117781, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007090

RESUMO

The classical natural history of chronic myeloid leukemia (CML) has been drastically modified by the introduction of tyrosine kinase inhibitor (TKI) therapies. TKI discontinuation is currently possible in patients in deep molecular responses, using strict recommendations of molecular follow-up due to risk of molecular relapse, especially during the first 6 months. We report here the case of a patient who voluntarily interrupted her TKI therapy. She remained in deep molecular remission (MR4) for 18 months followed by detection of a molecular relapse at +20 months. Despite this relapse, she declined therapy until the occurrence of the hematological relapse (+ 4 years and 10 months). Retrospective sequential transcriptome experiments and a single-cell transcriptome RNA-seq analysis were performed. They revealed a molecular network focusing on several genes involved in both activation and inhibition of NK-T cell activity. Interestingly, the single-cell transcriptome analysis showed the presence of cells expressing NKG7, a gene involved in granule exocytosis and highly involved in anti-tumor immunity. Single cells expressing as granzyme H, cathepsin-W, and granulysin were also identified. The study of this case suggests that CML was controlled for a long period of time, potentially via an immune surveillance phenomenon. The role of NKG7 expression in the occurrence of treatment-free remissions (TFR) should be evaluated in future studies.

5.
Cell Rep ; 36(7): 109530, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34380018

RESUMO

A recent study proposed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks the LINE-1 (L1) retrotransposition machinery to integrate into the DNA of infected cells. If confirmed, this finding could have significant clinical implications. Here, we apply deep (>50×) long-read Oxford Nanopore Technologies (ONT) sequencing to HEK293T cells infected with SARS-CoV-2 and do not find the virus integrated into the genome. By examining ONT data from separate HEK293T cultivars, we completely resolve 78 L1 insertions arising in vitro in the absence of L1 overexpression systems. ONT sequencing applied to hepatitis B virus (HBV)-positive liver cancer tissues located a single HBV insertion. These experiments demonstrate reliable resolution of retrotransposon and exogenous virus insertions by ONT sequencing. That we find no evidence of SARS-CoV-2 integration suggests that such events are, at most, extremely rare in vivo and therefore are unlikely to drive oncogenesis or explain post-recovery detection of the virus.


Assuntos
COVID-19/virologia , DNA Viral/genética , Genoma Humano , SARS-CoV-2/genética , Análise de Sequência de DNA , Integração Viral , Idoso , Animais , COVID-19/diagnóstico , Carcinoma Hepatocelular/virologia , Chlorocebus aethiops , Células HEK293 , Vírus da Hepatite B/genética , Interações Hospedeiro-Patógeno , Humanos , Neoplasias Hepáticas/virologia , Elementos Nucleotídeos Longos e Dispersos , Masculino , Sequenciamento por Nanoporos , Células Vero
6.
Mol Cell ; 80(5): 915-928.e5, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33186547

RESUMO

Transposable elements (TEs) drive genome evolution and are a notable source of pathogenesis, including cancer. While CpG methylation regulates TE activity, the locus-specific methylation landscape of mobile human TEs has to date proven largely inaccessible. Here, we apply new computational tools and long-read nanopore sequencing to directly infer CpG methylation of novel and extant TE insertions in hippocampus, heart, and liver, as well as paired tumor and non-tumor liver. As opposed to an indiscriminate stochastic process, we find pronounced demethylation of young long interspersed element 1 (LINE-1) retrotransposons in cancer, often distinct to the adjacent genome and other TEs. SINE-VNTR-Alu (SVA) retrotransposons, including their internal tandem repeat-associated CpG island, are near-universally methylated. We encounter allele-specific TE methylation and demethylation of aberrantly expressed young LINE-1s in normal tissues. Finally, we recover the complete sequences of tumor-specific LINE-1 insertions and their retrotransposition hallmarks, demonstrating how long-read sequencing can simultaneously survey the epigenome and detect somatic TE mobilization.


Assuntos
Metilação de DNA , Elementos de DNA Transponíveis , DNA de Neoplasias , Epigênese Genética , Epigenoma , Regulação Neoplásica da Expressão Gênica , Elementos Nucleotídeos Longos e Dispersos , Sequenciamento por Nanoporos , Neoplasias , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Neoplasias/genética , Neoplasias/metabolismo , Especificidade de Órgãos
7.
World J Hepatol ; 12(12): 1198-1210, 2020 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-33442448

RESUMO

BACKGROUND: Liver reduction is the main curative treatment for primary liver cancer, but its use remains limited as liver regeneration requires a minimum of 30% functional parenchyma. AIM: To study the dynamics of the liver regeneration process and consequent behavior of cell cycle regulators in rats after extended hepatectomy (90%) and postoperative glucose infusions. METHODS: Post-hepatectomy liver failure was triggered in 84 Wistar rats by reducing their liver mass by 90%. The animals received a post-operative glucose infusion and were randomly assigned to two groups: One to investigate the survival rate and the other for biochemical analyses. Animals that underwent laparotomy or 70% hepatectomy were used as controls. Blood and liver samples were collected on postoperative days 1 to 7. Liver morphology, function, and regeneration were studied with histology, immunohistochemistry, and western blotting. RESULTS: Postoperative mortality after major resection reached 20% and 55% in the first 24 h and 48 h, respectively, with an overall total of 70% 7 d after surgery. No apparent signs of apoptotic cell death were detected in the extended hepatectomy rat livers, but hepatocytes displaying a clear cytoplasm and an accumulation of hyaline material testified to changes affecting their functional activities. Liver regeneration started properly, as early events initiating cell proliferation occurred within the first 3 h, and the G1 to S transition was detected in less than 12 h. However, a rise in p27 (Kip1) followed by p21 (Waf1/Cip1) cell cycle inhibitor levels led to a delayed S phase progression and mitosis. Overall, liver regeneration in rats with a 90% hepatectomy was delayed by 24 h and associated with a delayed onset and lower peak magnitude of hepatocellular deoxyribonucleic acid synthesis. CONCLUSION: This work highlights the critical importance of the cyclin/cyclin-dependent kinase inhibitors of the Cip/Kip family in regulating the liver regeneration timeline following extended hepatectomy.

9.
Hepatology ; 72(3): 965-981, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31875970

RESUMO

BACKGROUND AND AIMS: Intrahepatic cholangiocarcinoma (ICC) is a severe malignant tumor in which the standard therapies are mostly ineffective. The biological significance of the desmoplastic tumor microenvironment (TME) of ICC has been stressed but was insufficiently taken into account in the search for classifications of ICC adapted to clinical trial design. We investigated the heterogeneous tumor stroma composition and built a TME-based classification of ICC tumors that detects potentially targetable ICC subtypes. APPROACH AND RESULTS: We established the bulk gene expression profiles of 78 ICCs. Epithelial and stromal compartments of 23 ICCs were laser microdissected. We quantified 14 gene expression signatures of the TME and those of 3 functional indicators (liver activity, inflammation, immune resistance). The cell population abundances were quantified using the microenvironment cell population-counter package and compared with immunohistochemistry. We performed an unsupervised TME-based classification of 198 ICCs (training set) and 368 ICCs (validation set). We determined immune response and signaling features of the different immune subtypes by functional annotations. We showed that a set of 198 ICCs could be classified into 4 TME-based subtypes related to distinct immune escape mechanisms and patient outcomes. The validity of these immune subtypes was confirmed over an independent set of 368 ICCs and by immunohistochemical analysis of 64 ICC tissue samples. About 45% of ICCs displayed an immune desert phenotype. The other subtypes differed in nature (lymphoid, myeloid, mesenchymal) and abundance of tumor-infiltrating cells. The inflamed subtype (11%) presented a massive T lymphocyte infiltration, an activation of inflammatory and immune checkpoint pathways, and was associated with the longest patient survival. CONCLUSION: We showed the existence of an inflamed ICC subtype, which is potentially treatable with checkpoint blockade immunotherapy.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Imunofenotipagem/métodos , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Neoplasias dos Ductos Biliares/classificação , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/imunologia , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/classificação , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/imunologia , Colangiocarcinoma/patologia , Descoberta de Drogas , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade/imunologia , Imuno-Histoquímica , Inflamação/imunologia , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Transcriptoma
10.
Genome Res ; 28(5): 639-653, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29643204

RESUMO

The retrotransposon Long Interspersed Element 1 (LINE-1 or L1) is a continuing source of germline and somatic mutagenesis in mammals. Deregulated L1 activity is a hallmark of cancer, and L1 mutagenesis has been described in numerous human malignancies. We previously employed retrotransposon capture sequencing (RC-seq) to analyze hepatocellular carcinoma (HCC) samples from patients infected with hepatitis B or hepatitis C virus and identified L1 variants responsible for activating oncogenic pathways. Here, we have applied RC-seq and whole-genome sequencing (WGS) to an Abcb4 (Mdr2)-/- mouse model of hepatic carcinogenesis and demonstrated for the first time that L1 mobilization occurs in murine tumors. In 12 HCC nodules obtained from 10 animals, we validated four somatic L1 insertions by PCR and capillary sequencing, including TF subfamily elements, and one GF subfamily example. One of the TF insertions carried a 3' transduction, allowing us to identify its donor L1 and to demonstrate that this full-length TF element retained retrotransposition capacity in cultured cancer cells. Using RC-seq, we also identified eight tumor-specific L1 insertions from 25 HCC patients with a history of alcohol abuse. Finally, we used RC-seq and WGS to identify three tumor-specific L1 insertions among 10 intra-hepatic cholangiocarcinoma (ICC) patients, including one insertion traced to a donor L1 on Chromosome 22 known to be highly active in other cancers. This study reveals L1 mobilization as a common feature of hepatocarcinogenesis in mammals, demonstrating that the phenomenon is not restricted to human viral HCC etiologies and is encountered in murine liver tumors.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Transformação Celular Neoplásica/genética , Feminino , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Mamíferos/genética , Camundongos Knockout , Pessoa de Meia-Idade , Mutagênese Insercional , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
11.
J Virol ; 90(23): 10811-10822, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27681123

RESUMO

Hepatitis B virus (HBV) is a major cause of liver diseases, including hepatocellular carcinoma (HCC), and more than 650,000 people die annually due to HBV-associated liver failure. Extensive studies of individual promoters have revealed that heterogeneous RNA 5' ends contribute to the complexity of HBV transcriptome and proteome. Here, we provide a comprehensive map of HBV transcription start sites (TSSs) in human liver, HCC, and blood, as well as several experimental replication systems, at a single-nucleotide resolution. Using CAGE (cap analysis of gene expression) analysis of 16 HCC/nontumor liver pairs, we identify 17 robust TSSs, including a novel promoter for the X gene located in the middle of the gene body, which potentially produces a shorter X protein translated from the conserved second start codon, and two minor antisense transcripts that might represent viral noncoding RNAs. Interestingly, transcription profiles were similar in HCC and nontumor livers, although quantitative analysis revealed highly variable patterns of TSS usage among clinical samples, reflecting precise regulation of HBV transcription initiation at each promoter. Unlike the variety of TSSs found in liver and HCC, the vast majority of transcripts detected in HBV-positive blood samples are pregenomic RNA, most likely generated and released from liver. Our quantitative TSS mapping using the CAGE technology will allow better understanding of HBV transcriptional responses in further studies aimed at eradicating HBV in chronic carriers. IMPORTANCE: Despite the availability of a safe and effective vaccine, HBV infection remains a global health problem, and current antiviral protocols are not able to eliminate the virus in chronic carriers. Previous studies of the regulation of HBV transcription have described four major promoters and two enhancers, but little is known about their activity in human livers and HCC. We deeply sequenced the HBV RNA 5' ends in clinical human samples and experimental models by using a new, sensitive and quantitative method termed cap analysis of gene expression (CAGE). Our data provide the first comprehensive map of global TSS distribution over the entire HBV genome in the human liver, validating already known promoters and identifying novel locations. Better knowledge of HBV transcriptional activity in the clinical setting has critical implications in the evaluation of therapeutic approaches that target HBV replication.


Assuntos
Carcinoma Hepatocelular/virologia , Vírus da Hepatite B/genética , Hepatite B Crônica/virologia , Neoplasias Hepáticas/virologia , Regiões Promotoras Genéticas , Adulto , Idoso , Animais , Mapeamento Cromossômico , Feminino , Genoma Viral , Células Hep G2 , Vírus da Hepatite B/patogenicidade , Humanos , Fígado/virologia , Masculino , Camundongos , Pessoa de Meia-Idade , Capuzes de RNA/genética , RNA Viral/genética , Sítio de Iniciação de Transcrição , Transcriptoma
12.
PLoS One ; 11(3): e0150733, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26983031

RESUMO

OBJECTIVE: No efficient medical treatment is available for severe acute hepatitis (SAH) except N-acetylcysteine for acetaminophen-induced acute liver failure. The human C-type lectin Reg3α, referred to as ALF-5755, improved survival in an animal model of acute liver failure and was well tolerated in a phase 1 trial in humans. We performed a phase 2a trial of ALF5755 in non-acetaminophen induced SAH. DESIGN: double-blind, randomized, placebo-controlled study. The primary end-point was the improvement in the coagulation protein synthesis assessed by the change of Prothrombin (PR) during the 72 hours following treatment initiation calculated as PRH0 minus PRH72 divided by 72 (PR slope H0H72). Intention to treat (ITT) and per-protocol (PP) analysis of the entire group and the Hepatitis B virus (HBV)/AIH (auto-immune hepatitis) sub-group were done separately. RESULTS: 57 patients were included. Twenty-eight received ALF-5755, 29 the placebo. Etiologies were: Hepatitis A (n = 10), HBV (n = 13), AIH (n = 9), drug-induced (n = 8), other (n = 17). On the whole group, nor the PR slope H0H72 (0.18±0.31 vs 0.25±0.32), nor the transplant-free survival rate at day 21 (75 vs 86%) differed between groups. Conversely, in the HBV-AIH subgroup, in which ALF was more severe, PR slope H0-H72 was higher in the ALF-5755 arm, the difference being significant in PP analysis (0.048±0.066 vs -0.040±0.099, p = 0.04); the median length of hospitalization was lower in the ALF-5755 group (8 vs 14 days, p = 0.02). CONCLUSION: ALF-5755 was not efficient in a ITT analysis performed on the whole sample; however it led to a significant, although moderate, clinical benefit in a PP analysis of the sub-group of patients with HBV or AIH related SAH. As HBV is the major cause of SAH in Asia and Africa and AIH a growing cause, this study emphasizes the need to pursuit the evaluation of this novel medical treatment of SAH. TRIAL REGISTRATION: ClinicalTrials.gov NCT01318525.


Assuntos
Antígenos de Neoplasias/uso terapêutico , Antioxidantes/uso terapêutico , Biomarcadores Tumorais/uso terapêutico , Matriz Extracelular/efeitos dos fármacos , Lectinas Tipo C/uso terapêutico , Hepatopatias/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Doença Aguda , Adulto , Antígenos de Neoplasias/efeitos adversos , Antígenos de Neoplasias/farmacologia , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Área Sob a Curva , Biomarcadores Tumorais/efeitos adversos , Biomarcadores Tumorais/farmacocinética , Biomarcadores Tumorais/farmacologia , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Associadas a Pancreatite , Placebos , Prognóstico , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacologia
13.
Genome Res ; 25(12): 1812-24, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26510915

RESUMO

An increasing number of noncoding RNAs (ncRNAs) have been implicated in various human diseases including cancer; however, the ncRNA transcriptome of hepatocellular carcinoma (HCC) is largely unexplored. We used CAGE to map transcription start sites across various types of human and mouse HCCs with emphasis on ncRNAs distant from protein-coding genes. Here, we report that retroviral LTR promoters, expressed in healthy tissues such as testis and placenta but not liver, are widely activated in liver tumors. Despite HCC heterogeneity, a subset of LTR-derived ncRNAs were more than 10-fold up-regulated in the vast majority of samples. HCCs with a high LTR activity mostly had a viral etiology, were less differentiated, and showed higher risk of recurrence. ChIP-seq data show that MYC and MAX are associated with ncRNA deregulation. Globally, CAGE enabled us to build a mammalian promoter map for HCC, which uncovers a new layer of complexity in HCC genomics.


Assuntos
Carcinoma Hepatocelular/etiologia , Perfilação da Expressão Gênica , Neoplasias Hepáticas/etiologia , Regiões Promotoras Genéticas , RNA não Traduzido/genética , Sequências Repetidas Terminais , Sítio de Iniciação de Transcrição , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Viral , Biologia Computacional/métodos , Modelos Animais de Doenças , Progressão da Doença , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Ligação Proteica , Fatores de Transcrição/metabolismo , Transcriptoma , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
15.
PLoS One ; 10(5): e0125584, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25938566

RESUMO

BACKGROUND AND AIMS: Acute liver failure (ALF) is a rapidly progressive heterogeneous illness with high mortality rate and no widely accessible cure. A promising drug candidate according to previous preclinical studies is the Reg3α (or HIP/PAP) lectin, which alleviates ALF through its free-radical scavenging activity. Here we study the therapeutic targets of Reg3α in order to gain information on the nature of the oxidative stress associated with ALF. METHODS: Primary hepatocytes stressed with the reactive oxygen species (ROS) inducers TNFα and H2O2 were incubated with a recombinant Reg3α protein. ALF was induced in C57BL/6J mice by an anti-CD95 antibody. Livers and primary hepatocytes were harvested for deoxycholate separation of cellular and extracellular fractions, immunostaining, immunoprecipitation and malondialdehyde assays. Fibrin deposition was studied by immunofluorescence in frozen liver explants from patients with ALF. RESULTS: Fibrin deposition occurs during experimental and clinical acute liver injuries. Reg3α bound the resulting transient fibrin network, accumulated in the inflammatory extracellular matrix (ECM), greatly reduced extracellular ROS levels, and improved cell viability. Hepatocyte treatment with ligands of death receptors, e.g. TNFα and Fas, resulted in a twofold increase of malondialdehyde (MDA) level in the deoxycholate-insoluble fractions. Reg3α treatment maintained MDA at a level similar to control cells and thereby increased hepatocyte survival by 35%. No antioxidant effect of Reg3α was noted in the deoxycholate-soluble fractions. Preventing fibrin network formation with heparin suppressed the prosurvival effect of Reg3α. CONCLUSIONS: Reg3α is an ECM-targeted ROS scavenger that binds the fibrin scaffold resulting from hepatocyte death during ALF. ECM alteration is an important pathogenic factor of ALF and a relevant target for pharmacotherapy.


Assuntos
Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Espaço Extracelular/metabolismo , Lectinas Tipo C/metabolismo , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Estresse Oxidativo , Adulto , Idoso , Animais , Células Cultivadas , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Feminino , Fibrina/metabolismo , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Modelos Biológicos , Proteínas Associadas a Pancreatite , Receptor fas/metabolismo
16.
Ann Clin Transl Neurol ; 1(10): 739-54, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25493266

RESUMO

OBJECTIVES: Excitotoxicity plays a significant role in the pathogenesis of perinatal brain injuries. Among the consequences of excessive activation of the N-methyl-d-aspartate (NMDA)-type glutamate are oxidative stress caused by free radical release from damaged mitochondria, neuronal death and subsequent loss of connectivity. Drugs that could protect nervous tissue and support regeneration are attractive therapeutic options. The hepatocarcinoma intestine pancreas protein/pancreatitis-associated protein I (HIP/PAP) or Reg3α, which is approved for clinical testing for the protection and regeneration of the liver, is upregulated in the central nervous system following injury or disease. Here, we examined the neuroprotective/neuroregenerative potential of HIP/PAP following excitotoxic brain injury. METHODS: We studied the expression of HIP/PAP and two of its putative effectors, cAMP-regulated phosphoprotein 19 (ARPP19) and growth-associated protein 43 (GAP-43), in the neonatal brain, and the protective/regenerative properties of HIP/PAP in three paradigms of perinatal excitotoxicity: intracerebral injection of the NMDA agonist ibotenate in newborn pups, a pediatric model of traumatic brain injury, and cultured primary cortical neurons. RESULTS: HIP/PAP, ARPP19, and GAP-43 were expressed in the neonatal mouse brain. HIP/PAP prevented the formation of cortical and white matter lesions and reduced neuronal death and glial activation following excitotoxic insults in vivo. In vitro, HIP/PAP promoted neuronal survival, preserved neurite complexity and fasciculation, and protected cell contents from reactive oxygen species (ROS)-induced damage. INTERPRETATION: HIP/PAP has strong neuroprotective/neuroregenerative potential following excitotoxic injury to the developing brain, and could represent an interesting therapeutic strategy in perinatal brain injury.

17.
Nat Commun ; 5: 3850, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24819516

RESUMO

Hepatocellular carcinoma (HCC) is almost invariably associated with an underlying inflammatory state, whose direct contribution to the acquisition of critical genomic changes is unclear. Here we map acquired genomic alterations in human and mouse HCCs induced by defects in hepatocyte biliary transporters, which expose hepatocytes to bile salts and cause chronic inflammation that develops into cancer. In both human and mouse cancer genomes, we find few somatic point mutations with no impairment of cancer genes, but massive gene amplification and rearrangements. This genomic landscape differs from that of virus- and alcohol-associated liver cancer. Copy-number gains preferentially occur at late stages of cancer development and frequently target the MAPK signalling pathway, and in particular direct regulators of JNK. The pharmacological inhibition of JNK retards cancer progression in the mouse. Our study demonstrates that intrahepatic cholestasis leading to hepatocyte exposure to bile acids and inflammation promotes cancer through genomic modifications that can be distinguished from those determined by other aetiological factors.


Assuntos
Carcinoma Hepatocelular/genética , Colestase Intra-Hepática/genética , Variações do Número de Cópias de DNA/genética , Amplificação de Genes , Hepatócitos/metabolismo , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas/genética , Sistema de Sinalização das MAP Quinases/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Camundongos , Camundongos Knockout , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
18.
Surgery ; 155(1): 94-105, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24694360

RESUMO

INTRODUCTION: Posthepatectomy liver failure (PHLF) is a severe complication after hepatectomy for colorectal liver metastases. This study evaluated its actual incidence and its effects on short- and long-term overall survival (OS) in a specialized center. MATERIALS AND METHODS: Between 2006 and 2008, 193 patients who underwent 232 hepatectomies (147 minor and 85 major) for colorectal liver metastasis were studied prospectively. Hepatectomy was performed if the remnant liver volume was >0.5% of body weight. Uni- and multivariate analyses on OS after all hepatectomies (n = 232) or major resection only (n = 85) were then performed on pre-, intra-, and postoperative (including pathological) data to determine the consequences of PHLF by comparison with those of other intra- and postoperative events. RESULTS: The 3-month postoperative mortality rate was 0.8%. PHLF was observed in six patients (7%) after major hepatectomy and in one (0.6%) after minor hepatectomy. With a 25-month follow-up, the 2-year OS rate was 84%. Preoperatively, pulmonary metastasis was the only determinant of OS. Intra- and postoperatively, four factors were determinant of OS: PHLF (risk ratio [RR] = 3.84, P = .04), mental confusion (RR = 3.11, P = .006), fluid collection (RR = 2.9, P = .01) and transfusion (RR = 2.27, P = .009). After major hepatectomy, only PHLF (RR = 4.14, P = .01) and confusion (RR = 3.6, P = .02) were identified. CONCLUSION: With improvements in postoperative management, PHLF was found to be less responsible for 3-month mortality but remains an event that exerts a major impact on 2-year survival.


Assuntos
Hepatectomia/efeitos adversos , Falência Hepática/mortalidade , Neoplasias Hepáticas/cirurgia , Complicações Pós-Operatórias/mortalidade , Idoso , Neoplasias Colorretais/patologia , Feminino , Seguimentos , França/epidemiologia , Humanos , Incidência , Fígado/patologia , Falência Hepática/etiologia , Neoplasias Hepáticas/secundário , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
20.
Cell ; 153(1): 101-11, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23540693

RESUMO

LINE-1 (L1) retrotransposons are mobile genetic elements comprising ~17% of the human genome. New L1 insertions can profoundly alter gene function and cause disease, though their significance in cancer remains unclear. Here, we applied enhanced retrotransposon capture sequencing (RC-seq) to 19 hepatocellular carcinoma (HCC) genomes and elucidated two archetypal L1-mediated mechanisms enabling tumorigenesis. In the first example, 4/19 (21.1%) donors presented germline retrotransposition events in the tumor suppressor mutated in colorectal cancers (MCC). MCC expression was ablated in each case, enabling oncogenic ß-catenin/Wnt signaling. In the second example, suppression of tumorigenicity 18 (ST18) was activated by a tumor-specific L1 insertion. Experimental assays confirmed that the L1 interrupted a negative feedback loop by blocking ST18 repression of its enhancer. ST18 was also frequently amplified in HCC nodules from Mdr2(-/-) mice, supporting its assignment as a candidate liver oncogene. These proof-of-principle results substantiate L1-mediated retrotransposition as an important etiological factor in HCC.


Assuntos
Carcinoma Hepatocelular/genética , Análise Mutacional de DNA , Genes Supressores de Tumor , Neoplasias Hepáticas/genética , Elementos Nucleotídeos Longos e Dispersos , Mutagênese Insercional , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA