Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 355: 120448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422850

RESUMO

Salinity stress poses a significant challenge to agriculture, impacting soil health, plant growth and contributing to greenhouse gas (GHG) emissions. In response to these intertwined challenges, the use of biochar and its nanoscale counterpart, nano-biochar, has gained increasing attention. This comprehensive review explores the heterogeneous role of biochar and nano-biochar in enhancing salt resilience in plants and soil while concurrently mitigating GHG emissions. The review discusses the effects of these amendments on soil physicochemical properties, improved water and nutrient uptake, reduced oxidative damage, enhanced growth and the alternation of soil microbial communities, enhance soil fertility and resilience. Furthermore, it examines their impact on plant growth, ion homeostasis, osmotic adjustment and plant stress tolerance, promoting plant development under salinity stress conditions. Emphasis is placed on the potential of biochar and nano-biochar to influence soil microbial activities, leading to altered emissions of GHG emissions, particularly nitrous oxide(N2O) and methane(CH4), contributing to climate change mitigation. The comprehensive synthesis of current research findings in this review provides insights into the multifunctional applications of biochar and nano-biochar, highlighting their potential to address salinity stress in agriculture and their role in sustainable soil and environmental management. Moreover, it identifies areas for further investigation, aiming to enhance our understanding of the intricate interplay between biochar, nano-biochar, soil, plants, and greenhouse gas emissions.


Assuntos
Gases de Efeito Estufa , Resiliência Psicológica , Gases de Efeito Estufa/análise , Solo/química , Carvão Vegetal/química , Agricultura , Cloreto de Sódio , Metano/análise , Óxido Nitroso/análise , Dióxido de Carbono/análise
2.
Gels ; 9(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38131959

RESUMO

Psoriasis is a chronic inflammatory skin disease characterized by the hyperproliferation and aberrant differentiation of epidermal keratinocytes. It is a debilitating condition that can cause significant physical and emotional distress. Natural anti-psoriatic agents have been investigated as alternatives to conventional allopathic medications, as they have notable limitations and drawbacks. Curcumin and tea tree oil are cost-efficient and effective anti-inflammatory medicines with less adverse effects compared to synthetic psoriasis medications. Our research endeavors to harness the therapeutic potential of these natural compounds by developing an herbal anti-psoriatic topical drug delivery system. This novel method uses curcumin and tea tree oil to create a bi-phasic emulgel drug delivery system. Formulations F1 (gel) and F2 (emulgel) have high drug content percentages of 84.2% and 96.7%, respectively. The emulgel showed better spreadability for cutaneous applications, with a viscosity of 92,200 ± 943 cp compared to the gel's 56,200 ± 1725 cp. The emulgel released 94.48% of the drugs, compared to 87.58% for the gel. These formulations conform to the zero-order and Higuchi models, and their stability over a three-month period is crucial. In vivo, the emulgel healed psoriasis symptoms faster than the usual gel. The gathered results confirmed the emulgel's potential as a drug delivery method, emphasizing the complementary benefits of tea tree oil and curcumin as an effective new therapy for psoriasis.

3.
Ecotoxicol Environ Saf ; 256: 114866, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37023649

RESUMO

The multifarious problems created by arsenic (As), for collective environment and human health, serve a cogent case for searching integrative agricultural approaches to attain food security. Rice (Oryza sativa L.) acts as a sponge for heavy metal(loid)s accretion, specifically As, due to anaerobic flooded growth conditions facilitating its uptake. Acclaimed for their positive impact on plant growth, development and phosphorus (P) nutrition, 'mycorrhizas' are able to promote stress tolerance. Albeit, the metabolic alterations underlying Serendipita indica (S. indica; S.i) symbiosis-mediated amelioration of As stress along with nutritional management of P are still understudied. By using biochemical, RT-qPCR and LC-MS/MS based untargeted metabolomics approach, rice roots of ZZY-1 and GD-6 colonized by S. indica, which were later treated with As (10 µM) and P (50 µM), were compared with non-colonized roots under the same treatments with a set of control plants. The responses of secondary metabolism related enzymes, especially polyphenol oxidase (PPO) activities in the foliage of ZZY-1 and GD-6 were enhanced 8.5 and 12-fold, respectively, compared to their respective control counterparts. The current study identified 360 cationic and 287 anionic metabolites in rice roots, and the commonly enriched pathway annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was biosynthesis of phenylalanine, tyrosine and tryptophan, which validated the results of biochemical and gene expression analyses associated with secondary metabolic enzymes. Particularly under As+S.i+P comparison, both genotypes exhibited an upregulation of key detoxification and defense related metabolites, including fumaric acid, L-malic acid, choline, 3,4-dihydroxybenzoic acid, to name a few. The results of this study provided the novel insights into the promising role of exogenous P and S. indica in alleviating As stress.


Assuntos
Arsênio , Oryza , Fósforo , Poluentes do Solo , Humanos , Arsênio/toxicidade , Cromatografia Líquida , Oryza/metabolismo , Oryza/microbiologia , Fósforo/análise , Raízes de Plantas/metabolismo , Metabolismo Secundário , Espectrometria de Massas em Tandem , Poluentes do Solo/toxicidade
4.
Biology (Basel) ; 10(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34356521

RESUMO

Cadmium (Cd) stress is increasing at a high pace and is polluting the agricultural land. As a result, it affects animals and the human population via entering into the food chain. The aim of this work is to evaluate the possibility of amelioration of Cd stress through chitosan nanoparticles (CTS-NPs). After 15 days of sowing (DAS), Solanum lycopersicum seedlings were transplanted into maintained pots (20 in number). Cadmium (0.8 mM) was providing in the soil as CdCl2·2.5H2O at the time of transplanting; however, CTS-NPs (100 µg/mL) were given through foliar spray at 25 DAS. Data procured from the present experiment suggests that Cd toxicity considerably reduces the plant morphology, chlorophyll fluorescence, in addition to photosynthetic efficiency, antioxidant enzyme activity and protein content. However, foliar application of CTS-NPs was effective in increasing the shoot dry weight (38%), net photosynthetic rate (45%) and SPAD index (40%), while a decrease in malondialdehyde (24%) and hydrogen peroxide (20%) was observed at the 30 DAS stage as compared to control plants. On behalf of the current results, it is demonstrated that foliar treatment of CTS-NPs might be an efficient approach to ameliorate the toxic effects of Cd.

5.
Ecotoxicol Environ Saf ; 220: 112401, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34118747

RESUMO

Cadmium (Cd) is a trace element causing severe toxicity symptoms in plants, besides posing hazardous fitness issue due to its buildup in the human body through food chain. Nanoparticles (NPs) are recently employed as a novel strategy to directly ameliorate the Cd stress and acted as nano-fertilizers. The intend of the current study was to explore the effects of zinc oxide nanoparticles (ZnO-NPs; 50 mg/L) on plant growth, photosynthetic activity, elemental status and antioxidant activity in Oryza sativa (rice) under Cd (0.8 mM) stress. To this end, the rice plants are treated by Cd stress at 15 days after sowing (DAS), and the treatment was given directly into the soil. Supply of ZnO-NPs as foliar spray was given for five consecutive days from 30 to 35 DAS, and sampling was done at 45 DAS. However, rice plants supplemented with ZnO-NPs under the Cd toxicity revealed significantly increased shoot length (SL; 34.0%), root fresh weight (RFW; 30.0%), shoot dry weight (SDW; 23.07%), and root dry weight (RDW; 12.24%). Moreover, the ZnO-NPs supplement has also positive effects on photosynthesis related parameters, SPAD value (40%), chloroplast structure, and qualitatively high fluorescence observed by confocal microscopy even under Cd stress. ZnO-NPs also substantially prevented the increases of hydrogen peroxide (H2O2) and malondialdehyde (MDA) triggered by Cd. Physiological and biochemical analysis showed that ZnO-NPs increased enzymatic activities of superoxide dismutase (SOD; 59%), catalase (CAT; 52%), and proline (17%) that metabolize reactive oxygen species (ROS); these increases coincided with the changes observed in the H2O2 and MDA accumulation after ZnO-NPs application. In conclusion, ZnO-NPs application to foliage has great efficiency to improve biomass, photosynthesis, protein, antioxidant enzymes activity, mineral nutrient contents and reducing Cd levels in rice. This can be attributed mainly from reduced oxidative damage resulted due to the ZnO-NPs application.


Assuntos
Antioxidantes/metabolismo , Cádmio/efeitos adversos , Nanopartículas , Oryza/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Poluentes do Solo/efeitos adversos , Óxido de Zinco/farmacologia , Biomassa , Catalase/metabolismo , Produtos Agrícolas/efeitos adversos , Produtos Agrícolas/fisiologia , Fertilizantes , Humanos , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oryza/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta , Solo/química , Superóxido Dismutase/metabolismo , Óxido de Zinco/administração & dosagem
6.
J Health Pollut ; 9(23): 190911, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31497374

RESUMO

BACKGROUND: The use of solid fuels in household cooking contributes to indoor air pollution and is the cause of more than 4 million deaths around the world annually. Solid fuel use varies with the level of development and ranges from 0% in high-income countries to more than 80% in low- and middle-income countries. Three billion people (more than 40% of the global population) are still dependent on solid fuels like firewood, dung cakes, coal, wood and agricultural residues in these countries. OBJECTIVES: The present study aims to analyze the association of certain respiratory diseases (tuberculosis (TB), acute upper respiratory infections (AURI), chronic obstructive pulmonary diseases (COPD), and bronchial asthma) with the use of solid fuels for cooking across sociodemographic groups in India. METHODS: The 71st round of the National Sample Survey, conducted in 2014, was used. In total, 54,985 inpatients who received medical treatment from any medical institution during the last 365 days preceding the survey and who reported various diseases, such as infections, cancers, blood diseases, cardiovascular diseases, and respiratory diseases were included in the analysis. Of these inpatients, 2513 participants who reported TB, AURI, COPD and bronchial asthma were considered the dependent variables in the study. The main variable was exposure to different types of fuels used as a primary source of energy for cooking. Multinomial logistic regression was used to explain associations. RESULTS: The results reveal a significant association between solid fuel use and respiratory diseases in India. Overall, more than 60% of the population uses firewood and cow dung as their primary source of energy for cooking and are at a higher risk of TB, COPD and bronchial asthma. In rural areas there is a high dependence on solid fuels (80.5%) and a higher risk of respiratory diseases compared to those residing in urban areas where people are less dependent on solid fuels (22%). Among different socio-demographic groups, the dependence on solid fuels is highest among Scheduled Tribes (87.42%), followed by Scheduled Castes (74.78%) and Other Backward Classes (OBCs) (a term used by the Indian government to categorize castes that face social or educational challenges) (64.47%). Scheduled Tribes have the highest risk of TB, followed by Scheduled Castes and OBCs, respectively. CONCLUSIONS: Exposure to solid fuels for cooking increases the potential risk of TB, COPD and bronchial asthma. Access to clean and efficient fuels for cooking is essential to reduce the burden of respiratory disease. Measures are needed to increase the availability of clean fuels for households, especially among socially disadvantaged and marginalized groups, to reduce the burden of respiratory diseases in India. COMPETING INTERESTS: The authors declare no competing financial interests.

7.
Artigo em Inglês | MEDLINE | ID: mdl-31020047

RESUMO

BACKGROUND: Most households in developing countries like India are not able to afford to get the services of efficient energy for cooking and lighting. Therefore, they rely mostly on solid fuels (firewood, dung cakes, crop residue, coal/coke/lignite). Such fuels cause respiratory diseases like tuberculosis, asthma respiratory cancer. Hence, this study aims to estimate the association between different types of energy used and the prevalence of respiratory diseases in India where more than 50% of the population relies on solid fuels for cooking. METHODS: The study is based on 117,752 respondents who were diagnosed with various chronic diseases such as diabetes, chronic heart diseases, leprosy, chronic renal diseases, tuberculosis, asthma etc. from District Level Household Survey (DLHS-4) which was conducted in 2012-13. Individuals who were diagnosed with a chronic illness after a proper medical examination have been considered as a dependent variable. Exposure to the type of cooking fuel is the main exposure variable, which recognises the dependence on energy. Logistic regression has been utilized to understand the association between the use of solid fuels for cooking and the prevalence of respiratory diseases. RESULTS: The dependence on solid fuels is very high in rural areas (72.22%) as compared to urban areas (21.43%). Among different castes, the reliance on solid fuels for cooking is highest among Scheduled Castes (61.79%) and Scheduled Tribes (70.46%). Individuals living in households where crop residue and coal/lignite is used for cooking suffer from asthma/chronic respiratory failure in the higher proportion as compared to others. Results further revealed that the use of solid fuels for cooking has a strong association with respiratory diseases. Individuals living in households where solid fuels like firewood [OR: 1.27 (0.001); C.I.: 1.19-1.35], crop residue [OR: 1.33 (0.001); C.I.:1.19-1.48], and coal [OR: 1.60 (0.001); C.I.:1.32-1.93] are used as primary fuel for cooking are 17 to 60% more likely to suffer from respiratory diseases. CONCLUSION: Use of solid fuels is associated with respiratory diseases like asthma, tuberculosis and cancer of the respiratory system. Assuming these associations are causal, therefore, about 17 to 60% of the respiratory diseases in India could be prevented by providing access to clean cooking fuel to the individuals.

8.
J Foot Ankle Surg ; 54(5): 967-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25128311

RESUMO

We conducted a study to determine the effectiveness of the Ponseti technique in the management of idiopathic congenital clubfoot in patients older than 1 year of age. A total of 19 patients with 28 clubfeet (16 males [84.2%], 3 females [15.8%]) were included in the present study. The mean age at presentation was 2.7 (range 1 to 3.5) years. The results of treatment using the Ponseti technique were evaluated using the Pirani and Dimeglio scoring systems. The mean precorrection total Pirani score was 4.84 (range 3.5 to 5.5) and the mean precorrection Dimeglio score was 12.96 (range 10 to 14). The mean postcorrection total Pirani score was 0.55 (range 0 to 1), and the mean postcorrection Dimeglio score was 2.32 (range 2 to 3). These differences were statistically significant (p < .001 and p < .001, respectively). In 92.8% of the feet, satisfactory correction of the deformity was achieved. The mean number of casts applied was 8 (range 5 to 12). All but 1 (3.6%) of the clubfeet required tenotomy to achieve correction. The mean follow-up duration was 2.7 (range 1.5 to 3.5) years. We have concluded that the Ponseti technique is an effective method for the management of idiopathic congenital clubfoot, even in toddlers.


Assuntos
Braquetes , Moldes Cirúrgicos , Pé Torto Equinovaro/diagnóstico , Pé Torto Equinovaro/terapia , Manipulação Ortopédica/métodos , Fatores Etários , Pré-Escolar , Estudos de Coortes , Feminino , Seguimentos , Humanos , Masculino , Monitorização Fisiológica/métodos , Estudos Prospectivos , Recuperação de Função Fisiológica/fisiologia , Medição de Risco , Fatores de Tempo , Resultado do Tratamento
9.
Int J Vitam Nutr Res ; 83(4): 238-45, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25008014

RESUMO

In this study the effect of increasing dietary alpha tocopherol on vitamin E tissue concentrations, lipid peroxidation (malondialdehyde), antioxidant enzymes, and fatty acid composition has been investigated in farmed Atlantic salmon. To this end fish (initial body weight ~ 193 g, n = 70 per group) were fed diets based on fish oil (27.5 %), fish meal (15.0 %), wheat gluten (20.6 %), and soy protein concentrate (24.0 %) for 14 weeks. Diets were supplemented with 0 (negative control), 150, and 400 mg/kg vitamin E as all-rac alpha-tocopheryl acetate. Dietary vitamin E did not affect feed conversion efficiency ratio but significantly (p < 0.05) increased alpha-tocopherol concentrations in salmon plasma, liver, and fillet (n = 8 per group each). The increase in fillet alpha-tocopherol was accompanied by a considerable decrease (p < 0.01) in malondialdehyde concentrations at the higher supplementation level. Furthermore, we observed an antagonistic interaction between alpha- and gamma-tocopherol in plasma at the highest supplementation level, since high dietary alpha-tocopherol reduced plasma gamma-tocopherol concentrations. Liver antioxidant enzymes, including glutathione peroxidase and superoxide dismutase, remained largely unchanged in response to dietary alpha-tocopherol. Dietary alpha-tocopherol did not affect eicosapentaenoic acid and docosahexaenoic acid concentrations in salmon fillet. Present data suggest that alpha-tocopherol supplementations beyond dietary recommendations may further improve flesh quality and nutritional value of Atlantic salmon fillet as far as malondialdehyde and vitamin E concentrations are concerned.


Assuntos
Antioxidantes/análise , Dieta/veterinária , Ácidos Graxos/análise , Carne/análise , Salmo salar/metabolismo , alfa-Tocoferol/administração & dosagem , Animais , Aquicultura , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/análise , Ácido Eicosapentaenoico/análise , Glutationa Peroxidase/análise , Fígado/enzimologia , Malondialdeído , Valor Nutritivo , Superóxido Dismutase/análise , Vitamina E/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA