Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 445: 130527, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36495640

RESUMO

Hydroponic experiments were performed to examine the effect of prolonged sulfate limitation combined with cadmium (Cd) exposure in Arabidopsis thaliana and a potential Cd hyperaccumulator, Nicotiana tabacum. Low sulfate treatments (20 and 40 µM MgSO4) and Cd stress (4 µM CdCl2) showed adverse effects on morphology, photosynthetic and biochemical parameters and the nutritional status of both species. For example, Cd stress decreased NO3- root content under 20 µM MgSO4 to approximately 50% compared with respective controls. Interestingly, changes in many measured parameters, such as chlorophyll and carotenoid contents, the concentrations of anions, nutrients and Cd, induced by low sulfate supply, Cd exposure or a combination of both factors, were species-specific. Our data showed opposing effects of Cd exposure on Ca, Fe, Mn, Cu and Zn levels in roots of the studied plants. In A. thaliana, levels of glutathione, phytochelatins and glucosinolates demonstrated their distinct involvement in response to sub-optimal growth conditions and Cd stress. In shoot, the levels of phytochelatins and glucosinolates in the organic sulfur fraction were not dependent on sulfate supply under Cd stress. Altogether, our data showed both common and species-specific features of the complex plant response to prolonged sulfate deprivation and/or Cd exposure.


Assuntos
Arabidopsis , Fitoquelatinas , Cádmio/toxicidade , Nicotiana , Sulfatos/farmacologia , Glucosinolatos/farmacologia , Nutrientes , Suplementos Nutricionais , Raízes de Plantas
2.
Plant Physiol ; 186(4): 1893-1907, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618100

RESUMO

The WEE1 and ATM AND RAD3-RELATED (ATR) kinases are important regulators of the plant intra-S-phase checkpoint; consequently, WEE1KO and ATRKO roots are hypersensitive to replication-inhibitory drugs. Here, we report on a loss-of-function mutant allele of the FASCIATA1 (FAS1) subunit of the chromatin assembly factor 1 (CAF-1) complex that suppresses the phenotype of WEE1- or ATR-deficient Arabidopsis (Arabidopsis thaliana) plants. We demonstrate that lack of FAS1 activity results in the activation of an ATAXIA TELANGIECTASIA MUTATED (ATM)- and SUPPRESSOR OF GAMMA-RESPONSE 1 (SOG1)-mediated G2/M-arrest that renders the ATR and WEE1 checkpoint regulators redundant. This ATM activation accounts for the telomere erosion and loss of ribosomal DNA that are described for fas1 plants. Knocking out SOG1 in the fas1 wee1 background restores replication stress sensitivity, demonstrating that SOG1 is an important secondary checkpoint regulator in plants that fail to activate the intra-S-phase checkpoint.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Replicação do DNA , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-myb/genética , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Genoma de Planta , Instabilidade Genômica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670111

RESUMO

The gene coding for the telomerase reverse transcriptase (TERT) is essential for the maintenance of telomeres. Previously we described the presence of three TERT paralogs in the allotetraploid plant Nicotiana tabacum, while a single TERT copy was identified in the paleopolyploid model plant Arabidopsis thaliana. Here we examine the presence, origin and functional status of TERT variants in allotetraploid Nicotiana species of diverse evolutionary ages and their parental genome donors, as well as in other diploid and polyploid plant species. A combination of experimental and in silico bottom-up analyses of TERT gene copies in Nicotiana polyploids revealed various patterns of retention or loss of parental TERT variants and divergence in their functions. RT-qPCR results confirmed the expression of all the identified TERT variants. In representative plant and green algal genomes, our synteny analyses show that their TERT genes were located in a conserved locus that became advantageous after the divergence of eudicots, and the gene was later translocated in several plant groups. In various diploid and polyploid species, translocation of TERT became fixed in target loci that show ancient synapomorphy.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Dosagem de Genes , Nicotiana , Poliploidia , Telomerase , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Telomerase/genética , Telomerase/metabolismo , Nicotiana/enzimologia , Nicotiana/genética
4.
Plant J ; 102(4): 678-687, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31834959

RESUMO

Telomeres, nucleoprotein structures at the ends of linear eukaryotic chromosomes, are crucial for the maintenance of genome integrity. In most plants, telomeres consist of conserved tandem repeat units comprising the TTTAGGG motif. Recently, non-canonical telomeres were described in several plants and plant taxons, including the carnivorous plant Genlisea hispidula (TTCAGG/TTTCAGG), the genus Cestrum (Solanaceae; TTTTTTAGGG), and plants from the Asparagales order with either a vertebrate-type telomere repeat TTAGGG or Allium genus-specific CTCGGTTATGGG repeat. We analyzed epigenetic modifications of telomeric histones in plants with canonical and non-canonical telomeres, and further in telomeric chromatin captured from leaves of Nicotiana benthamiana transiently transformed by telomere CRISPR-dCas9-eGFP, and of Arabidopsis thaliana stably transformed with TALE_telo C-3×GFP. Two combinatorial patterns of telomeric histone modifications were identified: (i) an Arabidopsis-like pattern (A. thaliana, G. hispidula, Genlisea nigrocaulis, Allium cepa, Narcissus pseudonarcissus, Petunia hybrida, Solanum tuberosum, Solanum lycopersicum) with telomeric histones decorated predominantly by H3K9me2; (ii) a tobacco-like pattern (Nicotiana tabacum, N. benthamiana, C. elegans) with a strong H3K27me3 signal. Our data suggest that epigenetic modifications of plant telomere-associated histones are related neither to the sequence of the telomere motif nor to the lengths of the telomeres. Nor the phylogenetic position of the species plays the role; representatives of the Solanaceae family are included in both groups. As both patterns of histone marks are compatible with fully functional telomeres in respective plants, we conclude that the described specific differences in histone marks are not critical for telomere functions.


Assuntos
Epigenômica , Código das Histonas/genética , Plantas/genética , Telômero/genética , Arabidopsis/genética , Cromatina/genética , Filogenia , Nicotiana/genética
5.
Cells ; 8(1)2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30654521

RESUMO

Parallel research on multiple model organisms shows that while some principles of telomere biology are conserved among all eukaryotic kingdoms, we also find some deviations that reflect different evolutionary paths and life strategies, which may have diversified after the establishment of telomerase as a primary mechanism for telomere maintenance. Much more than animals, plants have to cope with environmental stressors, including genotoxic factors, due to their sessile lifestyle. This is, in principle, made possible by an increased capacity and efficiency of the molecular systems ensuring maintenance of genome stability, as well as a higher tolerance to genome instability. Furthermore, plant ontogenesis differs from that of animals in which tissue differentiation and telomerase silencing occur during early embryonic development, and the "telomere clock" in somatic cells may act as a preventive measure against carcinogenesis. This does not happen in plants, where growth and ontogenesis occur through the serial division of apical meristems consisting of a small group of stem cells that generate a linear series of cells, which differentiate into an array of cell types that make a shoot and root. Flowers, as generative plant organs, initiate from the shoot apical meristem in mature plants which is incompatible with the human-like developmental telomere shortening. In this review, we discuss differences between human and plant telomere biology and the implications for aging, genome stability, and cell and organism survival. In particular, we provide a comprehensive comparative overview of telomere proteins acting in humans and in Arabidopsis thaliana model plant, and discuss distinct epigenetic features of telomeric chromatin in these species.


Assuntos
Plantas/metabolismo , Telômero/metabolismo , Senescência Celular/genética , Cromatina/metabolismo , Epigênese Genética , Humanos , Telomerase/metabolismo
6.
Plant Mol Biol ; 98(1-2): 81-99, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30128721

RESUMO

KEY MESSAGE: Standard pathways involved in the regulation of telomere stability do not contribute to gradual telomere elongation observed in the course of A. thaliana calli propagation. Genetic and epigenetic changes accompanying the culturing of plant cells have frequently been reported. Here we aimed to characterize the telomere homeostasis during long term callus propagation. While in Arabidopsis thaliana calli gradual telomere elongation was observed, telomeres were stable in Nicotiana tabacum and N. sylvestris cultures. Telomere elongation during callus propagation is thus not a general feature of plant cells. The long telomere phenotype in Arabidopsis calli was correlated neither with changes in telomerase activity nor with activation of alternative mechanisms of telomere elongation. The dynamics of telomere length changes was maintained in mutant calli with loss of function of important epigenetic modifiers but compromised in the presence of epigenetically active drug zebularine. To examine whether the cell culture-induced disruption of telomere homeostasis is associated with the modulated structure of chromosome ends, epigenetic properties of telomere chromatin were analysed. Albeit distinct changes in epigenetic modifications of telomere histones were observed, these were broadly stochastic. Our results show that contrary to animal cells, the structure and function of plant telomeres is not determined significantly by the epigenetic character of telomere chromatin. Set of differentially transcribed genes was identified in calli, but considering the known telomere- or telomerase-related functions of respective proteins, none of these changes per se was apparently related to the elongated telomere phenotype. Based on our data, we propose that the disruption in telomere homeostasis in Arabidopsis calli arises from the interplay of multiple factors, as a part of reprogramming of plant cells to long-term culture conditions.


Assuntos
Arabidopsis/metabolismo , Homeostase do Telômero , Telômero/metabolismo , Técnicas de Cultura de Tecidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Citidina/análogos & derivados , Citidina/farmacologia , Ecótipo , Epigênese Genética/efeitos dos fármacos , Genes de Plantas , Histonas/metabolismo , Mutação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regeneração/efeitos dos fármacos , Especificidade da Espécie , Telomerase/metabolismo , Homeostase do Telômero/efeitos dos fármacos , Nicotiana/genética
8.
Planta ; 245(3): 549-561, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27900472

RESUMO

MAIN CONCLUSION: In tobacco, three sequence variants of the TERT gene have been described. We revealed unbalanced levels of TERT variant transcripts in vegetative tobacco tissues and enhanced TERT transcription and telomerase activity in reproductive tissues. Telomerase is a ribonucleoprotein complex responsible for the maintenance of telomeres, structures delimiting ends of linear eukaryotic chromosomes. In the Nicotiana tabacum (tobacco) allotetraploid plant, three sequence variants (paralogs) of the gene coding for the telomerase reverse transcriptase subunit (TERT) have been described, two of them derived from the maternal N. sylvestris genome (TERT_Cs, TERT_D) and one originated from the N. tomentosiformis paternal genome (TERT_Ct). In this work, we analyzed the transcription of TERT variants in correlation with telomerase activity in tobacco tissues. High and approximately comparable levels of TERT_Ct and TERT_Cs transcripts were detected in seedlings, roots, flower buds and leaves, while the transcript of the TERT_D variant was markedly underrepresented. Similarly, in N. sylvestris tissues, TERT_Cs transcript significantly predominated. A specific pattern of TERT transcripts was found in samples of tobacco pollen with the TERT_Cs variant clearly dominating particularly at the early stage of pollen development. Detailed analysis of TERT_C variants representation in functionally distinct fractions of pollen transcriptome revealed their prevalence in large ribonucleoprotein particles encompassing translationally silent mRNA; only a minority of TERT_Ct and TERT_Cs transcripts were localized in actively translated polysomes. Histones of the TERT_C chromatin were decorated predominantly with the euchromatin-specific epigenetic modification in both telomerase-positive and telomerase-negative tobacco tissues. We conclude that the existence and transcription pattern of tobacco TERT paralogs represents an interesting phenomenon and our results indicate its functional significance. Nicotiana species have again proved to be appropriate and useful model plants in telomere biology studies.


Assuntos
Regulação da Expressão Gênica de Plantas , Variação Genética , Nicotiana/genética , Especificidade de Órgãos/genética , Telomerase/genética , Núcleo Celular/genética , Imunoprecipitação da Cromatina , Eucromatina/metabolismo , Histonas/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Polirribossomos/metabolismo , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Telomerase/metabolismo , Transcrição Gênica
9.
Plant J ; 83(1): 18-37, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25752316

RESUMO

Telomeres and genes encoding 45S ribosomal RNA (rDNA) are frequently located adjacent to each other on eukaryotic chromosomes. Although their primary roles are different, they show striking similarities with respect to their features and additional functions. Both genome domains have remarkably dynamic chromatin structures. Both are hypersensitive to dysfunctional histone chaperones, responding at the genomic and epigenomic levels. Both generate non-coding transcripts that, in addition to their epigenetic roles, may induce gross chromosomal rearrangements. Both give rise to chromosomal fragile sites, as their replication is intrinsically problematic. However, at the same time, both are essential for maintenance of genomic stability and integrity. Here we discuss the structural and functional inter-connectivity of telomeres and rDNA, with a focus on recent results obtained in plants.


Assuntos
Cromatina/química , DNA Ribossômico/metabolismo , Plantas/genética , Telômero/metabolismo , Cromatina/metabolismo , Replicação do DNA , DNA de Plantas/química , DNA de Plantas/metabolismo , DNA Ribossômico/química , Epigênese Genética , Instabilidade Genômica , Histonas/genética , Histonas/metabolismo , Telômero/genética
10.
Front Plant Sci ; 5: 593, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25408695

RESUMO

Epigenetic mechanisms are involved in regulation of crucial cellular processes in eukaryotic organisms. Data on the epigenetic features of plant telomeres and their epigenetic regulation were published mostly for Arabidopsis thaliana, in which the presence of interstitial telomeric repeats (ITRs) may interfere with genuine telomeres in most analyses. Here, we studied the epigenetic landscape and transcription of telomeres and ITRs in Nicotiana tabacum with long telomeres and no detectable ITRs, and in Ballantinia antipoda with large blocks of pericentromeric ITRs and relatively short telomeres. Chromatin of genuine telomeres displayed heterochromatic as well as euchromatic marks, while ITRs were just heterochromatic. Methylated cytosines were present at telomeres and ITRs, but showed a bias with more methylation toward distal telomere positions and different blocks of B. antipoda ITRs methylated to different levels. Telomeric transcripts TERRA (G-rich) and ARRET (C-rich) were identified in both plants and their levels varied among tissues with a maximum in blossoms. Plants with substantially different proportions of internally and terminally located telomeric repeats are instrumental in clarifying the chromatin status of telomeric repeats at distinct chromosome locations.

11.
Expert Opin Investig Drugs ; 22(12): 1535-47, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24160174

RESUMO

INTRODUCTION: Valproic acid (VPA) has been used in clinical practice as an anticonvulsant for more than four decades. Its pharmacokinetics and toxicity are thus well documented. VPA is also a potent class-selective histone deacetylase (HDAC) inhibitor at nontoxic therapeutic concentrations. New areas of application for VPA are currently opening up in clinical practice. AREAS COVERED: The authors discuss VPA and how it may serve as an effective drug for cancer therapy. This is due to its ability to induce differentiation of a number of cancer cells in vitro and also to decrease tumor growth and metastases in animal models. The authors highlight how the utilization of VPA as an HDAC inhibitor is not limited to a single-agent therapy. Early clinical studies have also revealed promising potency of VPA in combination treatment with classic anticancer drugs. The authors do this by summarizing the published results and providing insight into the potential future developments for this field. EXPERT OPINION: VPA was shown to restore or improve responsiveness of tumors to conventional therapeutic agents, to enhance the efficacy of adenoviral gene therapy, to sensitize TRAIL-resistant tumor cells to apoptosis, and to enhance radiosensitivity of tumor cells. Drawbacks in VPA medical applications include its teratogenicity and complexity of its effects.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias/tratamento farmacológico , Ácido Valproico/uso terapêutico , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácido Valproico/farmacologia
12.
Physiol Plant ; 149(1): 114-26, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23278240

RESUMO

Although telomerase (EC 2.7.7.49) is important for genome stability and totipotency of plant cells, the principles of its regulation are not well understood. Therefore, we studied subcellular localization and function of the full-length and truncated variants of the catalytic subunit of Arabidopsis thaliana telomerase, AtTERT, in planta. Our results show that multiple sites in AtTERT may serve as nuclear localization signals, as all the studied individual domains of the AtTERT were targeted to the nucleus and/or the nucleolus. Although the introduced genomic or cDNA AtTERT transgenes display expression at transcript and protein levels, they are not able to fully complement the lack of telomerase functions in tert -/- mutants. The failure to reconstitute telomerase function in planta suggests a more complex telomerase regulation in plant cells than would be expected based on results of similar experiments in mammalian model systems.


Assuntos
Arabidopsis/genética , Telomerase/química , Telomerase/genética , Telomerase/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Domínio Catalítico/genética , Nucléolo Celular/enzimologia , Nucléolo Celular/genética , Núcleo Celular/enzimologia , Núcleo Celular/genética , Regulação da Expressão Gênica de Plantas , Sinais de Localização Nuclear/genética , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Splicing de RNA , Relação Estrutura-Atividade , Nicotiana/genética
13.
Mol Biosyst ; 8(11): 2937-45, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22915142

RESUMO

Overexpression of histone deacetylases (HDACs), with consequent hypoacetylation of histones, is reportedly associated with transcriptional repression of tumour suppressor genes. Thus, inhibition of HDACs has emerged as a promising strategy in cancer therapy. In order to monitor the effects of potential HDAC inhibitors, a multi-level approach consisting of preliminary screening (measurement of HDAC activity and semi-quantitative evaluation of histone H4 modification profile by MALDI-TOF MS) and detailed analysis of histone modification forms (using 2-D AUT/AU PAGE and LC-ESI-IT MS) has been used in this study. The data obtained provide a global insight into the effects of HDAC inhibitors on the histone acetylation status that participates in gene transcription control. Using two example inhibitors, valproic acid sodium salt and entinostat, we show that similar levels of HDAC inhibition induced by different agents can lead to distinct rates of histone hyperacetylation, suggesting that except for the direct inhibition of HDACs, additional molecular mechanisms amplifying the response are likely to be involved in the inhibitory process. The approach used in our study makes it possible not only to follow the dynamics of individual histone modification forms, but also of their combined occurrence in the N-terminal fragment.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Acetilação/efeitos dos fármacos , Benzamidas/farmacologia , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Histona Desacetilases/metabolismo , Humanos , Piridinas/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ácido Valproico/farmacologia
14.
J Biol Chem ; 287(38): 32206-15, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22815473

RESUMO

Double-stranded regions of the telomeres are recognized by proteins containing Myb-like domains conferring specificity toward telomeric repeats. Although biochemical and structural studies revealed basic molecular principles involved in DNA binding, relatively little is known about evolutionary pathways leading to various types of Myb domain-containing proteins in divergent species of eukaryotes. Recently we identified a novel type of telomere-binding protein YlTay1p from the yeast Yarrowia lipolytica containing two Myb domains (Myb1, Myb2) very similar to the Myb domain of mammalian TRF1 and TRF2. In this study we prepared mutant versions of YlTay1p lacking Myb1, Myb2, or both Myb domains and found that YlTay1p carrying either Myb domain exhibits preferential affinity to both Y. lipolytica (GGGTTAGTCA)(n) and human (TTAGGG)(n) telomeric sequences. Quantitative measurements of the protein binding to telomeric DNA revealed that the presence of both Myb domains is required for a high affinity of YlTay1p to either telomeric repeat. Additionally, we performed detailed thermodynamic analysis of the YlTay1p interaction with its cognate telomeric DNA, which is to our knowledge the first energetic description of a full-length telomeric-protein binding to DNA. Interestingly, when compared with human TRF1 and TRF2 proteins, YlTay1p exhibited higher affinity not only for Y. lipolytica telomeres but also for human telomeric sequences. The duplication of the Myb domain region in YlTay1p thus produces a synergistic effect on its affinity toward the cognate telomeric sequence, alleviating the need for homodimerization observed in TRF-like proteins possessing a single Myb domain.


Assuntos
Proteínas Fúngicas/química , Proteínas Proto-Oncogênicas c-myb/química , Proteína 1 de Ligação a Repetições Teloméricas/química , Yarrowia/metabolismo , Sequência de Aminoácidos , Anisotropia , Biofísica/métodos , Calorimetria/métodos , Mapeamento Cromossômico , Evolução Molecular , Proteínas Fúngicas/metabolismo , Humanos , Cinética , Microscopia de Fluorescência/métodos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Telômero/ultraestrutura , Termodinâmica
15.
Chromosome Res ; 20(4): 381-94, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22543812

RESUMO

Telomerase is essential for proper functioning of telomeres in eukaryotes. We cloned and characterised genes for the protein subunit of telomerase (TERT) in the allotetraploid Nicotiana tabacum (tobacco) and its diploid progenitor species Nicotiana sylvestris and Nicotiana tomentosiformis with the aim of determining if allopolyploidy (hybridisation and genome duplication) influences TERT activity and divergence. Two of the three sequence variants present in the tobacco genome (NtTERT-C/s and NtTERT-D) revealed similarity to two sequence variants found in N. sylvestris and another variant (NtTERT-C/t) was similar to TERT of N. tomentosiformis. Variants of N. sylvestris origin showed less similarity to each other (80.5 % in the genomic region; 90.1 % in the coding sequence) than that between the NtTERT-C/s and NtTERT-C/t variants (93.6 and 97.2 %, respectively). The NtTERT-D variant was truncated at the 5' end, and indels indicated that it was a pseudogene. All tobacco variants were transcribed and alternatively spliced sequences were detected. Analysis of gene arrangements uncovered a novel exon in the N-terminal domain of TERT variants, a feature that is likely to be commonly found in Solanaceae species. In addition, species-specific duplications were observed within exon 5. The putative function, copy number and evolutionary origin of these NtTERT sequence variants are discussed.


Assuntos
Nicotiana/genética , Telomerase/genética , Processamento Alternativo , Sequência de Aminoácidos , Sequência de Bases , Evolução Molecular , Éxons , Ordem dos Genes , Rearranjo Gênico , Loci Gênicos , Genoma de Planta , Íntrons , Dados de Sequência Molecular , Pseudogenes , Isoformas de RNA , Sequências Repetitivas de Ácido Nucleico , Alinhamento de Sequência , Transcrição Gênica
16.
Chromosoma ; 121(4): 419-31, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22544226

RESUMO

Telomere repeats are added onto chromosome ends by telomerase, consisting of two main core components: a catalytic protein subunit (telomerase reverse trancriptase, TERT), and an RNA subunit (telomerase RNA, TR). Here, we report for the first time evidence that HMGB1 (a chromatin-associated protein in mammals, acting as a DNA chaperone in transcription, replication, recombination, and repair) can modulate cellular activity of mammalian telomerase. Knockout of the HMGB1 gene (HMGB1 KO) in mouse embryonic fibroblasts (MEFs) results in chromosomal abnormalities, enhanced colocalization of γ-H2AX foci at telomeres, and a moderate shortening of telomere lengths. HMGB1 KO MEFs also exhibit significantly (>5-fold) lower telomerase activity than the wild-type MEFs. Correspondingly, enhanced telomerase activity is observed upon overexpression of HMGB1 in MEFs. HMGB1 physically interacts with both TERT and TR, as well as with active telomerase complex in vitro. However, direct interaction of HMGB1 with telomerase is most likely not accountable for the observed higher telomerase activity in HMGB1-containing cells, as revealed from the inability of purified HMGB1 protein to stimulate telomerase activity in vitro. While no transcriptional silencing of TERT is observed in HMGB1 KO MEFs, levels of TR are diminished (~3-fold), providing possible explanation for the observed lower telomerase activity in HMGB1 KO cells. Interestingly, knockout of the HMGB2 gene elevates telomerase activity (~3-fold) in MEFs, suggesting that the two closely related proteins of the HMGB family, HMGB1 and HMGB2, have opposite effects on telomerase activity in the cell. The ability of HMGB1 to modulate cellular activity of telomerase and to maintain telomere integrity can help to understand some aspects of the protein involvement in chromosome stability and cancer.


Assuntos
Fibroblastos/citologia , Técnicas de Inativação de Genes , Proteína HMGB1/genética , RNA/genética , Telomerase/genética , Animais , Linhagem Celular , Aberrações Cromossômicas , Dano ao DNA , Fragmentação do DNA , Replicação do DNA , Regulação para Baixo , Fibroblastos/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Histonas/genética , Histonas/metabolismo , Hibridização in Situ Fluorescente , Camundongos , Microscopia de Fluorescência , RNA/metabolismo , Telomerase/metabolismo , Telômero/metabolismo , Telômero/patologia
17.
Plant Mol Biol ; 77(4-5): 371-80, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21866390

RESUMO

Telomere homeostasis is regulated at multiple levels, including the local chromatin structure of telomeres and subtelomeres. Recent reports demonstrated that a decrease in repressive chromatin marks, such as levels of cytosine methylation in subtelomeric regions, results in telomere elongation in mouse cells. Here we show that a considerable fraction of cytosines is methylated not only in subtelomeric, but also in telomeric DNA of tobacco BY-2 cells. Drug-induced hypomethylation (demonstrated at subtelomeric, telomeric, and global DNA levels) results in activation of telomerase. However, in contrast to mouse cells, the decrease in 5-methylcytosine levels and upregulation of telomerase do not result in any changes of telomere lengths. These results demonstrate the involvement of epigenetic mechanisms in the multilevel process of regulation of telomerase activity in plant cells and, at the same time, they indicate that changes in telomerase activity can be overridden by other factors governing telomere length stability.


Assuntos
Adenina/análogos & derivados , Citidina/análogos & derivados , DNA de Plantas/efeitos dos fármacos , Nicotiana/efeitos dos fármacos , Telomerase/metabolismo , Telômero/efeitos dos fármacos , Adenina/farmacologia , Células Cultivadas , Citidina/farmacologia , Metilação de DNA/efeitos dos fármacos , DNA de Plantas/química , Ativação Enzimática/efeitos dos fármacos , Epigênese Genética , Nucleossomos/efeitos dos fármacos , Nucleossomos/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Telômero/química , Telômero/metabolismo , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo , Transcrição Gênica/efeitos dos fármacos
18.
Mol Biosyst ; 7(4): 1013-23, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21283914

RESUMO

Recent results suggest that telomerase is involved in many more cellular processes than merely telomere elongation. These include telomere-independent anti-apoptotic, cytoprotective and pro-proliferative effects of telomerase or protection of mitochondrial DNA against oxidative stress. Telomerase also participates in DNA repair and its essential subunits, hTR and hTERT, are able to modulate independently the cell's response to DNA damage. Recent high throughput analyses of gene expression showed that hTERT expression modulates expression of about 300 genes, including genes involved in the regulation of cell cycle progression, proliferation and differentiation. Besides the well-known telomerase catalytic activity of RNA-dependent DNA polymerase, its RNA-dependent RNA polymerase activity was recently described in association with the RNA subunit of mitochondrial RNA processing endoribonuclease, thus suggesting involvement of telomerase in RNA interference processes. These recent discoveries open novel possibilities and entirely unexpected research perspectives, branching off from the mainstream telomere and telomerase research.


Assuntos
Telomerase/metabolismo , Animais , Ciclo Celular/fisiologia , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Regulação da Expressão Gênica/fisiologia , Humanos , Mitocôndrias/enzimologia , Neoplasias/enzimologia , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
19.
BMC Med Genet ; 11: 115, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20663204

RESUMO

BACKGROUND: Mutations in the LDLR gene are the most frequent cause of Familial hypercholesterolemia, an autosomal dominant disease characterised by elevated concentrations of LDL in blood plasma. In many populations, large genomic rearrangements account for approximately 10% of mutations in the LDLR gene. METHODS: DNA diagnostics of large genomic rearrangements was based on Multiple Ligation dependent Probe Amplification (MLPA). Subsequent analyses of deletion and duplication breakpoints were performed using long-range PCR, PCR, and DNA sequencing. RESULTS: In set of 1441 unrelated FH patients, large genomic rearrangements were found in 37 probands. Eight different types of rearrangements were detected, from them 6 types were novel, not described so far. In all rearrangements, we characterized their exact extent and breakpoint sequences. CONCLUSIONS: Sequence analysis of deletion and duplication breakpoints indicates that intrachromatid non-allelic homologous recombination (NAHR) between Alu elements is involved in 6 events, while a non-homologous end joining (NHEJ) is implicated in 2 rearrangements. Our study thus describes for the first time NHEJ as a mechanism involved in genomic rearrangements in the LDLR gene.


Assuntos
Hiperlipoproteinemia Tipo II/genética , Receptores de LDL/genética , Elementos Alu , Sequência de Bases , República Tcheca , Rearranjo Gênico , Humanos , Dados de Sequência Molecular
20.
Biol Cell ; 101(7): 375-92, 1 p following 392, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19419346

RESUMO

The TERT (telomerase reverse transcriptase) subunit of telomerase is an intensively studied macromolecule due to its key importance in maintaining genome integrity and role in cellular aging and cancer. In an effort to provide an up-to-date overview of the topic, we discuss the structure of TERT genes, their alternative splicing products and their functions. Nucleotide databases contain more than 90 full-length cDNA sequences of telomerase protein subunits. Numerous in silico, in vitro and in vivo experimental techniques have revealed a great deal of structural and functional data describing particular features of the telomerase subunit in various model organisms. We explore whether particular findings are generally applicable to telomerases or species-specific. We also discuss in an evolutionary context the role of identified functional TERT subdomains.


Assuntos
Telomerase/química , Telomerase/metabolismo , Processamento Alternativo , Animais , Células Eucarióticas/química , Células Eucarióticas/enzimologia , Evolução Molecular , Humanos , Dados de Sequência Molecular , Células Procarióticas/química , Células Procarióticas/enzimologia , Ligação Proteica , Telomerase/genética , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA