Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 7(12): 5633-5641, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34714630

RESUMO

Recently, the combined therapy has become one of the main approaches in cancer treatment. Combining different approaches may provide a significant outcome by triggering several death mechanisms or causing increased damage of tumor cells without hurting healthy ones. The supramolecular nanoplatform based on a high-Z metal reported here is a suitable system for the targeted delivery of chemotherapeutic compounds, imaging, and an enhanced radiotherapy outcome. HfO2 nanoparticles coated with oleic acid and a monomethoxypoly(ethylene glycol)-poly(ε-caprolactone) copolymer shell (nanoplatform) are able to accumulate inside cancer cells and release doxorubicin (DOX) under specific conditions. Neither uncoated nor coated nanoparticles show any cytotoxicity in vitro. DOX loaded onto a nanoplatform demonstrates a lower IC50 value than pure DOX. X-ray irradiation of cancer cells loaded with a nanoplatform shows a higher death rate than that for cells without nanoparticles. These results provide an important foundation for the development of complex nanoscale systems for combined cancer treatment.


Assuntos
Nanopartículas , Polietilenoglicóis , Quimiorradioterapia , Doxorrubicina , Háfnio , Óxidos
2.
Chembiochem ; 21(5): 607-611, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31553102

RESUMO

Soon after their discovery, RNA-cleaving deoxyribozymes (RCDZ) were explored as anticancer gene therapy agents. Despite low toxicity found in clinical trials, there is no clinically significant anticancer RCDZ-based therapy. Some of the reported disadvantages of RCDZ agents include poor accessibility to folded nucleic acids, low catalytic efficiency inside cells, and problems of intracellular delivery. On the other hand, structural DNA nanotechnology provides an opportunity to build multifunctional nano-associations that can address some of these problems. Herein we discuss the possibility of building RCDZ-based multifunctional DNA nanomachines equipped with RNA unwinding, cancer marker recognition, and RCDZ-based RNA-cleavage functions. An important advantage of such "nanomachines" is the possibility to cleave a housekeeping gene mRNA in a cancer-cell-specific manner. The proposed design could become a starting point for building sophisticated DNA-based nanodevices for cancer treatment.


Assuntos
DNA Catalítico , Nanotecnologia , Neoplasias/tratamento farmacológico , RNA/metabolismo , DNA Catalítico/química , DNA Catalítico/uso terapêutico , Humanos , Clivagem do RNA
3.
Sci Rep ; 9(1): 1176, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718643

RESUMO

Alumina is one of the most promising carriers for drug delivery due to the long history of its usage as a vaccine adjuvant. Sol-gel synthesis provides excellent conditions for entrapment of biomolecules within an inorganic cage providing stabilization of proteins under the extremal conditions. In this paper, we show in vitro investigation of monodisperse alumina xerogel nanocontainers (AXNCs) using bovine serum albumin as a model protein entrapped in sol-gel alumina building blocks. Particularly, dose and cell-type dependent cytotoxicity in HeLa and A549 cancer cell lines were employed as well as investigation of antibacterial effect and stability of AXNCs in different biological media. It was shown, that the release of entrapped protein could be provided only in low pH buffer (as in cancer cell cytoplasm). This property could be applied for anticancer drug development. We also discovered boehmite nanoparticles effect on horizontal gene transfer and observed the appearance of antibiotic resistance by means of exchanging of the corresponding plasmid between two different E. coli strains. The present work may help to understand better the influence of AXNCs on various biological systems, such as prokaryotic and eukaryotic cells, and the activity of AXNCs in different biological media.


Assuntos
Hidróxido de Alumínio/síntese química , Óxido de Alumínio/síntese química , Portadores de Fármacos/síntese química , Nanopartículas Metálicas , Transição de Fase , Células A549 , Antibacterianos/metabolismo , Antineoplásicos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Ligação Proteica , Proteínas/metabolismo
4.
Angew Chem Int Ed Engl ; 58(14): 4654-4658, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30693619

RESUMO

Despite decades of effort, gene therapy (GT) has failed to deliver clinically significant anticancer treatment, owing in part to low selectivity, low efficiency, and poor accessibility of folded RNA targets. Herein, we propose to solve these common problems of GT agents by using a DNA nanotechnology approach. We designed a deoxyribozyme-based DNA machine that can i) recognize the sequence of a cancer biomarker with high selectivity, ii) tightly bind a structured fragment of a housekeeping gene mRNA, and iii) cleave it with efficiency greater than that of a traditional DZ-based cleaving agent. An important advantage of the DNA nanomachine over other gene therapy approaches (antisense, siRNA, and CRISPR/cas) is its ability to cleave a housekeeping gene mRNA after being activated by a cancer marker RNA, which can potentially increase the efficiency of anticancer gene therapy. The DNA machine could become a prototype platform for a new type of anticancer GT agent.


Assuntos
Biomarcadores Tumorais/metabolismo , DNA de Neoplasias/metabolismo , Terapia Genética , Nanoestruturas/química , Neoplasias/terapia , RNA Mensageiro/genética , Biomarcadores Tumorais/química , DNA Catalítico/química , DNA Catalítico/metabolismo , DNA de Neoplasias/química , Humanos , Nanotecnologia , Neoplasias/metabolismo , Dobramento de RNA , RNA Mensageiro/metabolismo
5.
Sci Rep ; 7(1): 11343, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900211

RESUMO

We present a new approach for obtaining magnetic nanospheres with tunable size and high magnetization. The method is implemented via controllable destabilization of a stable magnetite hydrosol with glycerol, leading to the formation of aggregates followed by their stabilization with the citrate shell. This inexpensive, simple and easily scalable approach required no special equipment. The obtained samples were characterized by high stability and magnetization over 80 emu/g. Effects of synthetic conditions on physicochemical properties of nanospheres were monitored by hydrodynamic size, zeta potential, and polydispersity of magnetite aggregates. The size of the resulting aggregates varied between 650 nm and 40 nm, and the zeta potential from +30 mV to -43 mV by changing the ratio of the reagents. Under optimal conditions the clusters with a diameter of 80 nm were produced with a narrow size distribution ±3 nm. These characteristics allowed for optical response to the external magnetic field, thereby producing a magnetic photon liquid. Due to biocompatibility of the reagents used in the synthesis the nanospheres evoked a negligible cytotoxicity for human non-malignant and tumor cell lines. These results make new materials valuable in photonics and biomedicine.

6.
Colloids Surf B Biointerfaces ; 154: 21-26, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28284055

RESUMO

A major obstacle in the introduction of luminescent nanoparticles (NPs) for medical applications is that quantum dots, the most widely studied luminescent materials, despite being biologically safe after coating with a bioshell, still contain a toxic core mostly consisting of semi-conductor NPs, which are not approved by regulatory agencies. Here we point to a potential solution of this problem by using rare-earth (RE) doped hafnia NPs. Hafnia is approved for medical injections as an effective means for the treatment of radiosensitive and radioresistant tumors and can significantly decrease potential toxicity of RE ions. As a step towards the achievement of this goal we describe the development of a bio-friendly method for the preparation of a stable doped hafnia hydrosol with an isoelectric point (IEP) of 8.2, which shows high fluorescence and biocompatibility in regular coagulant tests and cytotoxic assays.


Assuntos
Háfnio/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Metais Terras Raras/administração & dosagem , Metais Terras Raras/química , Células Cultivadas , Estabilidade de Medicamentos , Humanos , Injeções , Luminescência , Teste de Materiais , Nanopartículas Metálicas/ultraestrutura , Pontos Quânticos/administração & dosagem , Pontos Quânticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA