Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Obes Rev ; 25(8): e13766, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38745386

RESUMO

Obesity stands as a formidable global health challenge, predisposing individuals to a plethora of chronic illnesses such as cardiovascular disease, diabetes, and cancer. A confluence of genetic polymorphisms, suboptimal dietary choices, and sedentary lifestyles significantly contribute to the elevated incidence of obesity. This multifaceted health issue profoundly disrupts homeostatic equilibrium at both organismal and cellular levels, with marked alterations in gut permeability as a salient consequence. The intricate mechanisms underlying these alterations have yet to be fully elucidated. Still, evidence suggests that heightened inflammatory cytokine levels and the remodeling of tight junction (TJ) proteins, particularly claudins, play a pivotal role in the manifestation of epithelial barrier dysfunction in obesity. Strategic targeting of proteins implicated in these pathways and metabolites such as short-chain fatty acids presents a promising intervention for restoring barrier functionality among individuals with obesity. Nonetheless, recognizing the heterogeneity among affected individuals is paramount; personalized medical interventions or dietary regimens tailored to specific genetic backgrounds and allergy profiles may prove indispensable. This comprehensive review delves into the nexus of obesity, tight junction remodeling, and barrier dysfunction, offering a critical appraisal of potential therapeutic interventions.


Assuntos
Obesidade , Junções Íntimas , Humanos , Mucosa Intestinal/metabolismo , Animais
2.
Nat Commun ; 15(1): 2269, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480682

RESUMO

Primary familial brain calcification (PFBC) is characterized by calcium deposition in the brain, causing progressive movement disorders, psychiatric symptoms, and cognitive decline. PFBC is a heterogeneous disorder currently linked to variants in six different genes, but most patients remain genetically undiagnosed. Here, we identify biallelic NAA60 variants in ten individuals from seven families with autosomal recessive PFBC. The NAA60 variants lead to loss-of-function with lack of protein N-terminal (Nt)-acetylation activity. We show that the phosphate importer SLC20A2 is a substrate of NAA60 in vitro. In cells, loss of NAA60 caused reduced surface levels of SLC20A2 and a reduction in extracellular phosphate uptake. This study establishes NAA60 as a causal gene for PFBC, provides a possible biochemical explanation of its disease-causing mechanisms and underscores NAA60-mediated Nt-acetylation of transmembrane proteins as a fundamental process for healthy neurobiological functioning.


Assuntos
Encefalopatias , Humanos , Acetilação , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encefalopatias/genética , Padrões de Herança , Mutação , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
3.
J Gene Med ; 26(1): e3583, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37640479

RESUMO

BACKGROUND: Although defects in sperm morphology and physiology lead to male infertility, in many instances, the exact disruption of molecular pathways in a given patient is often unknown. The glycolytic pathway is an essential process to supply energy in sperm cell motility. Enolase 4 (ENO4) is crucial for the glycolytic process, which provides the energy for sperm cells in motility. ENO4 is located in the sperm principal piece and is essential for the motility and organization of the sperm flagellum. In the present study, we characterized a family with asthenozoospermia and abnormal sperm morphology as a result of a variant in the enolase 4 (ENO4) gene. METHODS: Computer-assisted semen analysis, papanicolaou smear staining and scanning electron microscopy were used to examine sperm motility and morphology for semen analysis in patients. For genetic analysis, whole-exome sequencing followed by Sanger sequencing was performed. RESULTS: Two brothers in a consanguineous family were being clinically investigated for sperm motility and morphology issues. Genetic analysis by whole-exome sequencing revealed a homozygous variant [c.293A>G, p.(Lys98Arg)] in the ENO4 gene that segregated with infertility in the family, shared by affected but not controls. CONCLUSIONS: In view of the association of asthenozoospermia and abnormal sperm morphology in Eno4 knockout mice, we consider this to be the first report describing the involvement of ENO4 gene in human male infertility. We also explore the possible involvement of another variant in explaining other phenotypic features in this family.


Assuntos
Astenozoospermia , Infertilidade Masculina , Camundongos , Animais , Humanos , Masculino , Astenozoospermia/genética , Astenozoospermia/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides/genética , Espermatozoides/fisiologia , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Camundongos Knockout , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo
4.
Nat Med ; 29(5): 1273-1286, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37202560

RESUMO

The lack of multi-omics cancer datasets with extensive follow-up information hinders the identification of accurate biomarkers of clinical outcome. In this cohort study, we performed comprehensive genomic analyses on fresh-frozen samples from 348 patients affected by primary colon cancer, encompassing RNA, whole-exome, deep T cell receptor and 16S bacterial rRNA gene sequencing on tumor and matched healthy colon tissue, complemented with tumor whole-genome sequencing for further microbiome characterization. A type 1 helper T cell, cytotoxic, gene expression signature, called Immunologic Constant of Rejection, captured the presence of clonally expanded, tumor-enriched T cell clones and outperformed conventional prognostic molecular biomarkers, such as the consensus molecular subtype and the microsatellite instability classifications. Quantification of genetic immunoediting, defined as a lower number of neoantigens than expected, further refined its prognostic value. We identified a microbiome signature, driven by Ruminococcus bromii, associated with a favorable outcome. By combining microbiome signature and Immunologic Constant of Rejection, we developed and validated a composite score (mICRoScore), which identifies a group of patients with excellent survival probability. The publicly available multi-omics dataset provides a resource for better understanding colon cancer biology that could facilitate the discovery of personalized therapeutic approaches.


Assuntos
Biomarcadores Tumorais , Neoplasias do Colo , Humanos , Estudos de Coortes , Biomarcadores Tumorais/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Transcriptoma , Microambiente Tumoral
5.
J Transl Med ; 21(1): 171, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869348

RESUMO

BACKGROUND: Type 2 diabetes (T2D) is a critical healthcare challenge and priority in Qatar which is listed amongst the top 10 countries in the world, with its prevalence presently at 17% double the global average. MicroRNAs (miRNAs) are implicated in the pathogenesis of (T2D) and long-term microvascular complications including diabetic retinopathy (DR). METHODS: In this study, a T2D cohort that accurately matches the characteristics of the general population was employed to find microRNA (miRNA) signatures that are correlated with glycemic and ß cell function measurements. Targeted miRNA profiling was performed in (471) T2D individuals with or without DR and (491) (non-diabetic) healthy controls from the Qatar Biobank. Discovery analysis identified 20 differentially expressed miRNAs in T2D compared to controls, of which miR-223-3p was significantly upregulated (fold change:5.16, p = 3.6e-02) and positively correlated with glucose and hemoglobin A1c (HbA1c) levels (p-value = 9.88e-04 and 1.64e-05, respectively), but did not show any significant associations with insulin or C-peptide. Accordingly, we performed functional validation using a miR-223-3p mimic (overexpression) under control and hyperglycemia-induced conditions in a zebrafish model. RESULTS: Over-expression of miR-223-3p alone was associated with significantly higher glucose (42.7 mg/dL, n = 75 vs 38.7 mg/dL, n = 75, p = 0.02) and degenerated retinal vasculature, and altered retinal morphology involving changes in the ganglion cell layer and inner and outer nuclear layers. Assessment of retinal angiogenesis revealed significant upregulation in the expression of vascular endothelial growth factor and its receptors, including kinase insert domain receptor. Further, the pancreatic markers, pancreatic and duodenal homeobox 1, and the insulin gene expressions were upregulated in the miR-223-3p group. CONCLUSION: Our zebrafish model validates a novel correlation between miR-223-3p and DR development. Targeting miR-223-3p in T2D patients may serve as a promising therapeutic strategy to control DR in at-risk individuals.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Hiperglicemia , MicroRNAs , Humanos , Animais , Controle Glicêmico , Peixe-Zebra , Fator A de Crescimento do Endotélio Vascular , Insulina , Glucose
6.
J Transl Med ; 20(1): 502, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329474

RESUMO

BACKGROUND: The genetic architecture underlying Familial Hypercholesterolemia (FH) in Middle Eastern Arabs is yet to be fully described, and approaches to assess this from population-wide biobanks are important for public health planning and personalized medicine. METHODS: We evaluate the pilot phase cohort (n = 6,140 adults) of the Qatar Biobank (QBB) for FH using the Dutch Lipid Clinic Network (DLCN) criteria, followed by an in-depth characterization of all genetic alleles in known dominant (LDLR, APOB, and PCSK9) and recessive (LDLRAP1, ABCG5, ABCG8, and LIPA) FH-causing genes derived from whole-genome sequencing (WGS). We also investigate the utility of a globally established 12-SNP polygenic risk score to predict FH individuals in this cohort with Arab ancestry. RESULTS: Using DLCN criteria, we identify eight (0.1%) 'definite', 41 (0.7%) 'probable' and 334 (5.4%) 'possible' FH individuals, estimating a prevalence of 'definite or probable' FH in the Qatari cohort of ~ 1:125. We identify ten previously known pathogenic single-nucleotide variants (SNVs) and 14 putatively novel SNVs, as well as one novel copy number variant in PCSK9. Further, despite the modest sample size, we identify one homozygote for a known pathogenic variant (ABCG8, p. Gly574Arg, global MAF = 4.49E-05) associated with Sitosterolemia 2. Finally, calculation of polygenic risk scores found that individuals with 'definite or probable' FH have a significantly higher LDL-C SNP score than 'unlikely' individuals (p = 0.0003), demonstrating its utility in Arab populations. CONCLUSION: We design and implement a standardized approach to phenotyping a population biobank for FH risk followed by systematically identifying known variants and assessing putative novel variants contributing to FH burden in Qatar. Our results motivate similar studies in population-level biobanks - especially those with globally under-represented ancestries - and highlight the importance of genetic screening programs for early detection and management of individuals with high FH risk in health systems.


Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Adulto , Humanos , Pró-Proteína Convertase 9/genética , Bancos de Espécimes Biológicos , LDL-Colesterol , Fenótipo , Hiperlipoproteinemia Tipo II/complicações , Receptores de LDL , Mutação
7.
J Exp Clin Cancer Res ; 41(1): 199, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690832

RESUMO

BACKGROUND: Large immunogenomic analyses have demonstrated the prognostic role of the functional orientation of the tumor microenvironment in adult solid tumors, this variable has been poorly explored in the pediatric counterpart. METHODS: We performed a systematic analysis of public RNAseq data (TARGET) for five pediatric tumor types (408 patients): Wilms tumor (WLM), neuroblastoma (NBL), osteosarcoma (OS), clear cell sarcoma of the kidney (CCSK) and rhabdoid tumor of the kidney (RT). We assessed the performance of the Immunologic Constant of Rejection (ICR), which captures an active Th1/cytotoxic response. We also performed gene set enrichment analysis (ssGSEA) and clustered more than 100 well characterized immune traits to define immune subtypes and compared their outcome. RESULTS: A higher ICR score was associated with better survival in OS and high risk NBL without MYCN amplification but with poorer survival in WLM. Clustering of immune traits revealed the same five principal modules previously described in adult tumors (TCGA). These modules divided pediatric patients into six immune subtypes (S1-S6) with distinct survival outcomes. The S2 cluster showed the best overall survival, characterized by low enrichment of the wound healing signature, high Th1, and low Th2 infiltration, while the reverse was observed in S4. Upregulation of the WNT/Beta-catenin pathway was associated with unfavorable outcomes and decreased T-cell infiltration in OS. CONCLUSIONS: We demonstrated that extracranial pediatric tumors could be classified according to their immune disposition, unveiling similarities with adults' tumors. Immunological parameters might be explored to refine diagnostic and prognostic biomarkers and to identify potential immune-responsive tumors.


Assuntos
Neoplasias Ósseas , Neuroblastoma , Osteossarcoma , Adulto , Criança , Humanos , Neuroblastoma/genética , Prognóstico , Microambiente Tumoral/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-34815247

RESUMO

Microvillus inclusion disease (MVID) is a rare autosomal recessive condition characterized by a lack of microvilli on the surface of enterocytes, resulting in severe, life-threatening diarrhea that could lead to mortality within the first year of life. We identify two unrelated families, each with one child presenting with severe MVID from birth. Using trio whole-exome sequencing, we observed that the two families share a novel nonsense variant (Glu1589*) in the MYO5B gene, a type Vb myosin motor protein in which rare damaging mutations were previously described to cause MVID. This founder mutation was very rare in public databases and is likely specific to patients of Syrian ancestry. We present a detailed account of both patients' clinical histories to fully characterize the effect of this variant and expand the genotype-phenotype databases for MVID patients from the Middle East.


Assuntos
Infecções por Citomegalovirus , Miosina Tipo V , Infecções por Citomegalovirus/metabolismo , Humanos , Síndromes de Malabsorção , Microvilosidades/genética , Microvilosidades/metabolismo , Microvilosidades/patologia , Mucolipidoses , Mutação , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Miosinas/genética , Síria
9.
J Transl Med ; 19(1): 137, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794915

RESUMO

Type 1 diabetes affects millions of people globally and requires careful management to avoid serious long-term complications, including heart and kidney disease, stroke, and loss of sight. The type 1 diabetes patient cohort is highly heterogeneous, with individuals presenting with disease at different stages and severities, arising from distinct etiologies, and overlaying varied genetic backgrounds. At present, the "one-size-fits-all" treatment for type 1 diabetes is exogenic insulin substitution therapy, but this approach fails to achieve optimal blood glucose control in many individuals. With advances in our understanding of early-stage diabetes development, diabetes stratification, and the role of genetics, type 1 diabetes is a promising candidate for a personalized medicine approach, which aims to apply "the right therapy at the right time, to the right patient". In the case of type 1 diabetes, great efforts are now being focused on risk stratification for diabetes development to enable pre-clinical detection, and the application of treatments such as gene therapy, to prevent pancreatic destruction in a sub-set of patients. Alongside this, breakthroughs in stem cell therapies hold great promise for the regeneration of pancreatic tissues in some individuals. Here we review the recent initiatives in the field of personalized medicine for type 1 diabetes, including the latest discoveries in stem cell and gene therapy for the disease, and current obstacles that must be overcome before the dream of personalized medicine for all type 1 diabetes patients can be realized.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/terapia , Humanos , Insulina , Pâncreas , Medicina de Precisão , Transplante de Células-Tronco
10.
BMC Med Genet ; 17(1): 84, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27855655

RESUMO

BACKGROUND: Ligase IV syndrome, a hereditary disease associated with compromised DNA damage response mechanisms, and Urofacial syndrome, caused by an impairment of neural cell signaling, are both rare genetic disorders, whose reports in literature are limited. We describe the first case combining both disorders in a specific phenotype. CASE PRESENTATION: We report a case of a 7-year old girl presenting with a complex phenotype characterized by multiple congenital abnormalities and dysmorphic features, microcephaly, short stature, combined immunodeficiency and severe vesicoureteral reflux. Whole Genome Sequencing was performed and a novel ligase IV homozygous missense c.T1312C/p.Y438H mutation was detected, and is believed to be responsible for most of the clinical features of the child, except vesicoureteral reflux which has not been previously described for ligase IV deficiency. However, we observed a second rare damaging (nonsense) homozygous mutation (c.C2125T/p.R709X) in the leucine-rich repeats and immunoglobulin-like domains 2 gene that encodes a protein implicated in neural cell signaling and oncogenesis. Interestingly, this mutation has recently been reported as pathogenic and causing urofacial syndrome, typically displaying vesicoureteral reflux. Thus, this second mutation completes the missing genetic explanation for this intriguing clinical puzzle. We verified that both mutations fit an autosomal recessive inheritance model due to extensive consanguinity. CONCLUSIONS: We successfully identified a novel ligase IV mutation, causing ligase IV syndrome, and an additional rare leucine-rich repeats and immunoglobulin-like domains 2 gene nonsense mutation, in the context of multiple autosomal recessive conditions due to extensive consanguinity. This work demonstrates the utility of Whole Genome Sequencing data in clinical diagnosis in such cases where the combination of multiple rare phenotypes results in very intricate clinical pictures. It also reports a novel causative mutation and a clinical phenotype, which will help in better defining the essential features of both ligase IV and leucine-rich repeats and immunoglobulin-like domains 2 deficiency syndromes.


Assuntos
Anormalidades Craniofaciais/genética , DNA Ligase Dependente de ATP/genética , Genoma/genética , Transtornos do Crescimento/genética , Síndromes de Imunodeficiência/genética , Doenças Urológicas/genética , Anormalidades Múltiplas/genética , Encéfalo/diagnóstico por imagem , Criança , Anormalidades Craniofaciais/patologia , Fácies , Feminino , Transtornos do Crescimento/patologia , Homozigoto , Humanos , Síndromes de Imunodeficiência/patologia , Imunofenotipagem , Imageamento por Ressonância Magnética , Glicoproteínas de Membrana/genética , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Doenças Urológicas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA